Skip to main content

Introduction to Metabolic Control Analysis (MCA)

  • Protocol
  • First Online:
The Handbook of Metabolomics

Abstract

Metabolic Control Analysis (MCA) provides a conceptual framework for understanding the control of fluxes though metabolic pathways at the molecular level. It further provides a theoretical underpinning for an experimental approach to determining metabolic control. In this chapter, the basic principles of MCA are introduced, and the kinds of applications that are accessible to this approach. The relationship to flux analysis and measurement of metabolic fluxes is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savageau MA, Voit EO, Irvine DH. Biochemical systems-theory and metabolic control-theory.1. fundamental similarities and differences. Math Biosci. 1987;86(2):127–45.

    Article  CAS  Google Scholar 

  2. Savageau MA, Voit EO, Irvine DH. Biochemical systems-theory and metabolic control-theory. 2. the role of summation and connectivity relationships. Math Biosci. 1987;86(2):147–69.

    Article  CAS  Google Scholar 

  3. Savageau MA. Design of molecular control mechanisms and demand for gene-expression. Proc Natl Acad Sci USA. 1977;74(12):5647–51.

    Article  CAS  PubMed  Google Scholar 

  4. Voit EO. Computational analysis of biochemical systems: a practical guide for biochemists & molecular biologists. Cambridge, UK: Cambridge University Press; 2000.

    Google Scholar 

  5. Fell DA. Metabolic control analysis—a survey of its theoretical and experimental development. Biochem J. 1992;286:313–30.

    CAS  PubMed  Google Scholar 

  6. Fell D. Understanding the control of metabolism. In: Snell K, editor. Frontiers in metabolism. London: Portland Press; 1997.

    Google Scholar 

  7. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PWN. Metabolic control analysis in drug discovery and disease. Nat Biotechnol. 2002;20(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cornishbowden A. Metabolic control-theory and biochemical systems-theory—different objectives, different assumptions, different results. J Theor Biol. 1989;136(4):365–77.

    Article  CAS  Google Scholar 

  9. Cascante M, Franco R, Canela EI. Use of implicit methods from general sensitivity theory to develop a systematic-approach to metabolic control.1. unbranched pathways. Math Biosci. 1989;94(2):271–88.

    Article  CAS  PubMed  Google Scholar 

  10. Cascante M, Franco R, Canela EI. Use of implicit methods from general sensitivity theory to develop a systematic-approach to metabolic control.2. complex-systems. Math Biosci. 1989;94(2):289–309.

    Article  CAS  PubMed  Google Scholar 

  11. Heinrich R, Schuster S. The regulation of cellular systems. New York: Chapman & Hall; 1996.

    Book  Google Scholar 

  12. Nicholls DG, Ferguson SJ. Bioenergetics3. San Diego: Academic Press; 2001.

    Google Scholar 

  13. Hall D, Minton AP. Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta-Proteins and Proteomics. 2003;1649(2):127–39.

    Article  CAS  Google Scholar 

  14. Roberts JKM, Lane AN, Clark RA, Nieman RH. Relationships between the rate of synthesis of ATP and the concentrations of reactants and products of ATP hydrolysis in maize root-tips, determined by P-31 nuclear magnetic-resonance. Arch Biochem Biophys. 1985;240(2):712–22.

    Article  CAS  PubMed  Google Scholar 

  15. Fersht A. Structure and mechansim in protein science. Structure and mechansim in protein science. New York: W.H. Freeman & Co; 1999.

    Google Scholar 

  16. Albe KR, Butler MH, Wright BE. Cellular concentrations of enzymes and their substrates. J Theor Biol. 1990;143(2):163–95.

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava DK, Bernhard SA. Enzyme enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Regul. 1986;28:1–68.

    CAS  PubMed  Google Scholar 

  18. Werle M, Jahn L, Kreuzer J, Hofele J, Elsasser A, Ackermann C, Katus HA, Vogt AM. Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. J Biomed Sci. 2005;12(5):827–34.

    Article  CAS  PubMed  Google Scholar 

  19. Marin-Hernandez A, Rodriguez-Enriquez S, Vital-Gonzalez PA, Flores-Rodriguez FL, Macias-Silva M, Sosa-Garrocho M, Moreno-Sanchez R. Determining and understanding the control of glycolysis in fast-growth tumor cells—flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J. 2006;273(9):1975–88.

    Article  CAS  PubMed  Google Scholar 

  20. Suarez RK, Staples JF, Lighton JRB, West TG. Relationships between enzymatic flux capacities and metabolic flux rates: Nonequilibrium reactions in muscle glycolysis. Proc Natl Acad Sci USA. 1997;94(13):7065–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kacser H, Burns J. The control of flux. Symp Soc Exp Biol. 1973;27:65–104.

    CAS  PubMed  Google Scholar 

  22. Kacser H, Burns J, Fell D. The control of flux. Biochem Soc Trans. 1995;1923:1341–66.

    Google Scholar 

  23. Heinrich R, Rapoport TA. Linear steady-state treatment of enzymatic chains—general properties, control and effector strength. Eur J Biochem. 1974;42(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  24. Heinrich R, Rapoport TA. Linear steady-state treatment of enzymatic chains—critique of crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem. 1974;42(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  25. Rapoport TA, Heinrich R, Jacobasc G, Rapoport S. Linear steady-state treatment of enzymatic chains—mathematical-model of glycolysis of human erythrocytes. Eur J Biochem. 1974;42(1):107–20.

    Article  CAS  PubMed  Google Scholar 

  26. Kholodenko BN, Brown GC. Paradoxical control properties of enzymes within pathways: Can activation cause an enzyme to have increased control? Biochem J. 1996;314:753–60.

    CAS  PubMed  Google Scholar 

  27. de Atauri P, Acerenza L, Kholodenko BN, de la Iglesia N, Guinovart JJ, Agius L, Cascante M. Occurrence of paradoxical or sustained control by an enzyme when overexpressed: necessary conditions and experimental evidence with regard to hepatic glucokinase. Biochem J. 2001;355:787–93.

    PubMed  Google Scholar 

  28. Kacser H, Sauro HM, Acerenza L. Enzyme-enzyme interazctions and control analysis.1. the case of nonadditivity—monomer-oligomer associations. Eur J Biochem. 1990;187(3):481–91.

    Article  CAS  PubMed  Google Scholar 

  29. Kohdolenko BN, Lyubarev AE, Kurganov BI. Control of the metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles. Eur J Biochem. 1992;210:147–53.

    Article  Google Scholar 

  30. Kholodenko BN, Cascante M, Westerhoff HV. Control-theory of metabolic channeling. Mol Cell Biochem. 1995;143(2):151–68.

    Article  CAS  PubMed  Google Scholar 

  31. Kholodenko BN, Westerhoff HV, Puigjaner J, Cascante M. Control in channeled pathways—a matrix-method calculating the enzyme control coefficients. Biophys Chem. 1995;53(3):247–58.

    Article  CAS  PubMed  Google Scholar 

  32. Cornish-Bowden A, Cárdenas ML. Technological and medical implications of metabolic control analysis. Dordrecht: Kluwer; 2000.

    Book  Google Scholar 

  33. Comin-Anduix B, Boren J, Martinez S, Moro C, Centelles JJ, Trebukhina R, Petushok N, Lee WNP, Boros LG, Cascante M. The effect of thiamine supplementation on tumour proliferation—a metabolic control analysis study. Eur J Biochem. 2001;268(15):4177–82.

    Article  CAS  PubMed  Google Scholar 

  34. Boren J, Montoya AR, de Atauri P, Comin-Anduix B, Cortes A, Centelles JJ, Frederiks WM, Van Noorden CJF, Cascante M. Metabolic control analysis aimed at the ribose synthesis pathways of tumor cells: a new strategy for antitumor drug development. Mol Biol Rep. 2002;29(1–2):7–12.

    Article  CAS  PubMed  Google Scholar 

  35. Bowden AC. Metabolic control analysis in biotechnology and medicine. Nat Biotechnol. 1999;17(7):641–3.

    Article  CAS  PubMed  Google Scholar 

  36. Ramos-Montoya A, Lee WNP, Bassilian S, Lim S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noe V, Centelles JJ, Cascante M. Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. Int J Cancer. 2006;119(12):2733–41.

    Article  CAS  PubMed  Google Scholar 

  37. Weinberg RA. The Biology of Cancer. Garland Science: New York; 2007.

    Google Scholar 

  38. Summerton JE. Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem. 2007;7(7):651–60.

    Article  CAS  PubMed  Google Scholar 

  39. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC. p53 activation by knockdown technologies. PLoS Genet. 2007;3(5):787–801.

    Article  CAS  Google Scholar 

  40. Du LT, Pollard JM, Gatti RA. Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci USA. 2007;104(14):6007–12.

    Article  CAS  PubMed  Google Scholar 

  41. Liu YM, Borchert GL, Donald SP, Surazynski A, Hu CA, Weydert CJ, Oberley LW, Phang JM. MnSOD inhibits proline oxidase-induced apoptosis in colorectal cancer cells. Carcinogenesis. 2005;26(8):1335–42.

    Article  CAS  PubMed  Google Scholar 

  42. Monroe DG, Getz BJ, Johnsen SA, Riggs BL, Khosla S, Spelsberg TC. Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ER alpha or ER beta. J Cell Biochem. 2003;90(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  43. Acerenza L. Design of large metabolic responses. Constraints and sensitivity analysis. J Theor Biol. 2000;207(2):265–82.

    Article  CAS  PubMed  Google Scholar 

  44. Acerenza L, Ortega F. Metabolic control analysis for large changes: extension to variable elasticity coefficients. Iee Proceedings Systems Biology Syst Biol (Stevenage). 2006;153(5):323–6.

    Article  CAS  Google Scholar 

  45. Nicholls DG, Ferguson SJ, The chemiosmotic proton circuit. In: Bioenergetics3. San Diego: Academic Press; 2001

    Google Scholar 

  46. Hatzimanikatis V, Bailey JE. Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. Biotechnol Bioeng. 1997;54(2):91–104.

    Article  CAS  PubMed  Google Scholar 

  47. Wu L, Wang WM, van Winden WA, van Gulik WM, Heijnen JJ. A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics. Eur J Biochem. 2004;271(16):3348–59.

    Article  CAS  PubMed  Google Scholar 

  48. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. COPASI—a complex pathway simulator. Bioinformatics. 2006;22:3067–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Lane .

Editor information

Editors and Affiliations

Glossary

Disequilibrium ratio

Deviation of a reaction from equilibrium as expressed by the ratio of the actual reactants to the values they have at equilibrium, under the prevailing conditions Γ = (p/s)/Keq. This is related to the available free energy difference for driving a reaction: ΔG = ΔG 0−RTln Γ

Elasticity

Is a property of an enzyme and determines how the flux through a particular step depends on the substrate concentration: ∂lnv i/∂lns i

Flux

Net rate of a reaction or of a pathway. Flux is the difference between the forward rate and the reverse rate, J = v fv r

Flux Control

The extent to which flux is determined and is a system property. If J is the net flux, the control is determined by the sensitivity of the net flux to changes in activity at individual steps

Flux Control Coefficient (FCC)

Fractional change in flux due to a fractional change in enzyme activity a: FCC = ∂lnJ/∂lna

Hill equation

Proteins that interact with multiple substrates or ligands, such as hemoglobin, may show cooperativity between binging sites. The Hill equation represents an all or none cooperative binding equation of the form F = s n/(K + s n) where n is the Hill coefficient. A value n > 1 implies positive cooperativity, and n < 1 is negative cooperativity. N is always less than the number of binding sites. Cf. Monod–Wyman–Changeux and Koshland–Nemethy–Filmer models (15)

k cat, K m

In the Michaelis–Menten mechanism, k cat is the turnover number for an enzyme and represents the apparent first order rate constant for the breakdown of ES complexes. K m is operationally the concentration of substrate at which the reaction velocity is half its maximum possible, as determined by V max = k cat.[enzyme]. k cat/K m is the apparent second order rate constant or substrate-enzyme complex formation and determines the specificity of the enzyme for its substrate (15)

Rate

Speed of a reaction. For a Michaelis–Menten reaction, the initial rate is v i  = V max.s/(K m + s)

Regulation

In MCA, control and regulation are distinct properties. Control is defined through the coefficients such as FCC. In contrast, regulation refers to the maintenance of homeostasis (i.e., resistance change), and a regulated enzyme is one that performs this task. Such an enzyme does not have to have a high FCC

Response

How flux changes with respect to a local parameter p such as an effector Ri = ∂lnJ/∂lnpi

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Joy, M.P., Elston, T.C., Lane, A.N., Macdonald, J.M., Cascante, M. (2012). Introduction to Metabolic Control Analysis (MCA). In: Fan, TM., Lane, A., Higashi, R. (eds) The Handbook of Metabolomics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-618-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-618-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-617-3

  • Online ISBN: 978-1-61779-618-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics