Skip to main content

Assessments for Traumatic Brain Injury: An Introduction

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1682 Accesses

Abstract

Traumatic brain injury (TBI) is a complex disease, altering numerous intracellular cascades which affect neuronal, vascular, and glial elements of the brain. Structural damage is coupled with cellular- and systems-level functional impairment. The array of assessments used in state-of-the-art investigations of TBI in experimental models is necessarily diverse, encompassing morphological, physiological, biochemical and molecular, neurobehavioral, and neuroimaging tools. Selecting an appropriate assessment approach and utilizing it in a manner which optimizes insights into the pathophysiology of TBI can be a daunting task. This introduction discusses how selection of assessments might be influenced by the model and severity of TBI to be studied and the species, sex, and age of the experimental subjects. The importance of matching outcome measurements to the pathophysiological events being studied and the selection of appropriate time points for assessment are then highlighted. Finally, considerations surrounding the variability, validity, and sensitivity of assessment tools are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738

    Article  PubMed  Google Scholar 

  2. Hillered L, Vespa PM, Hovda DA (2005) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41

    Article  PubMed  Google Scholar 

  3. Bentzer P, Davidsson H, Grande PO (2000) Microdialysis-based long-term measurements of energy-related metabolites in the rat brain following a fluid percussion trauma. J Neuro-trauma 17:441–447

    Article  PubMed  CAS  Google Scholar 

  4. Le TH, Gean AD (2009) Neuroimaging of traumatic brain injury. Mt Sinai J Med 76:145–162

    Article  PubMed  Google Scholar 

  5. Kawamata T, Katayama Y (2007) Cerebral contusion: a role model for lesion progression. Prog Brain Res 161:235–241

    Article  PubMed  Google Scholar 

  6. Onyszchuk G, Al-Hafez B, He YY, Bilgen M, Berman NE, Brooks WM (2007) A mouse model of sensorimotor controlled cortical impact: characterization using longitudinal magnetic resonance imaging, behavioral assessments and histology. J Neurosci Methods 160: 187–196

    Article  PubMed  Google Scholar 

  7. Armstead WM (2000) Age-dependent cerebral hemodynamic effects of traumatic brain injury in newborn and juvenile pigs. Microcirculation 7:225–235

    PubMed  CAS  Google Scholar 

  8. Smith DH, Nonaka M, Miller R et al (2000) Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg 93:315–322

    Article  PubMed  CAS  Google Scholar 

  9. Vink R, Bahtia KD, Reilly PL (2008) The relationship between intracranial pressure and brain oxygenation following traumatic brain injury in sheep. Acta Neurochir Suppl 102: 189–192

    Article  PubMed  Google Scholar 

  10. Van den Heuvel C, Blumbergs PC, Finnie JW et al (1999) Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp Neurol 159:441–450

    Article  PubMed  Google Scholar 

  11. King C, Robinson T, Dixon CE, Rao GR, Larnard D, Nemoto CE (2010) Brain temperature profiles during epidural cooling with the ChillerPad in a monkey model of traumatic brain injury. J Neurotrauma 27(10): 1895–1903

    Article  PubMed  Google Scholar 

  12. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574

    Article  PubMed  CAS  Google Scholar 

  13. Gennarelli TA, Thibault LE, Tipperman R et al (1989) Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain. J Neurosurg 71:244–253

    Article  PubMed  CAS  Google Scholar 

  14. Inci S, Ozcan OE, Kilinc K (1998) Time-level relationship for lipid peroxidation and the protective effect of alpha-tocopherol in experimental mild and severe brain injury. Neurosurgery 43:330–335; discussion 335–336

    Google Scholar 

  15. Hartl R, Medary M, Ruge M, Arfors KE, Ghajar J (1997) Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl 70:240–242

    PubMed  CAS  Google Scholar 

  16. Lighthall JW (1988) Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5(1):1–15

    Article  PubMed  CAS  Google Scholar 

  17. Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:521–534

    PubMed  CAS  Google Scholar 

  18. Hayes RL, Stalhammar D, Povlishock JT et al (1987) A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II. Physiological and neuropathological observations. Brain Inj 1:93–112

    Article  PubMed  CAS  Google Scholar 

  19. Friess SH, Ichord RN, Owens K et al (2007) Neurobehavioral functional deficits following closed head injury in the neonatal pig. Exp Neurol 204:234–243

    Article  PubMed  Google Scholar 

  20. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28:365–378

    Article  PubMed  Google Scholar 

  21. Margulies S, Hicks R (2009) Combination therapies for traumatic brain injury: prospective considerations. J Neurotrauma 26:925–939

    Article  PubMed  Google Scholar 

  22. Duhaime AC (2006) Large animal models of traumatic injury to the immature brain. Dev Neurosci 28:380–387

    Article  PubMed  CAS  Google Scholar 

  23. Gilmer LK, Ansari MA, Roberts KN, Scheff SW (2010) Age-related mitochondrial changes after traumatic brain injury. J Neurotrauma 27:939–950

    Article  PubMed  Google Scholar 

  24. Giza CC, Kolb B, Harris NG, Asarnow RF, Prins ML (2009) Hitting a moving target: basic mechanisms of recovery from acquired developmental brain injury. Dev Neurorehabil 12:255–268

    Article  PubMed  Google Scholar 

  25. Onyszchuk G, He YY, Berman NE, Brooks WM (2008) Detrimental effects of aging on outcome from traumatic brain injury: a behavioral, magnetic resonance imaging, and histological study in mice. J Neurotrauma 25:153–171

    Article  PubMed  Google Scholar 

  26. Kupina NC, Detloff MR, Bobrowski WF, Snyder BJ, Hall ED (2003) Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Exp Neurol 180:55–73

    Article  PubMed  CAS  Google Scholar 

  27. Hall ED, Gibson TR, Pavel KM (2005) Lack of a gender difference in post-traumatic neurodegeneration in the mouse controlled cortical impact injury model. J Neurotrauma 22: 669–679

    Article  PubMed  Google Scholar 

  28. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology and cognitive deficits. J Neurotrauma 13:557–568

    Article  PubMed  CAS  Google Scholar 

  29. Katayama Y, Maeda T, Koshinaga M, Kawamata T, Tsubokawa T (1995) Role of excitatory amino acid-mediated ionic fluxes in traumatic brain injury. Brain Pathol 5:427–435

    Article  PubMed  CAS  Google Scholar 

  30. Soustiel JF, Larisch S (2010) Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 7:13–21

    Article  PubMed  CAS  Google Scholar 

  31. Hovda DA, Lee SM, Smith ML et al (1995) The neurochemical and metabolic cascade following brain injury: moving from animal models to man. J Neurotrauma 12:903–906

    Article  PubMed  CAS  Google Scholar 

  32. Stoica BA, Faden AI (2010) Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7:3–12

    Article  PubMed  CAS  Google Scholar 

  33. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  34. Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23: 293–299

    Article  PubMed  CAS  Google Scholar 

  35. Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7:22–30

    Article  PubMed  CAS  Google Scholar 

  36. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  37. Rink AD, Fung KM, Trojanowski JQ, Lee VMY, Neugebauer E, McIntosh TK (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147:1575–1583

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Saatman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saatman, K.E. (2012). Assessments for Traumatic Brain Injury: An Introduction. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics