Skip to main content

Förster Resonance Energy Transfer and Trapping in Selected Systems: Analysis by Monte-Carlo Simulation

  • Protocol
  • First Online:
Spectroscopic Methods of Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

Monte-Carlo simulation method is described and applied as an efficient tool to analyze experimental data in the presence of energy transfer in selected systems, where the use of analytical approaches is limited or even impossible. Several numerical and physical problems accompanying Monte-Carlo simulation are addressed. It is shown that the Monte-Carlo simulation enables to obtain orientation factor in partly ordered systems and other important energy transfer parameters unavailable directly from experiments. It is shown how Monte-Carlo simulation can predict some important features of energy transport like its directional character in ordered media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *In memory of Professor Czeslaw Bojarski.

References

  1. Förster T (1967) Mechanisms of energy transfer. In: Florkin M, Stolz EH (eds) Comprehensive biochemistry. Elsevier, Amsterdam, 22:61–80

    Google Scholar 

  2. Bojarski C, Sienicki K (1990) Energy transfer and migration in fluorescent solution. In: Rabek JA (ed) Photophysics and photochemistry. CRC, Boca Raton, pp 1–57

    Google Scholar 

  3. Van der Meer BW, Coker Ill G, Chen SY (1994) Resonance energy transfer: theory and data. VCH Publishers (Now Wiley-VCH), Inc., New York, pp 1–49

    Google Scholar 

  4. Bojarski P, Kułak L, Kamińska A (2002) Nonradiative excitation energy transport and its analysis in concentrated systems. Asian J Spectrosc 5:145–163

    Google Scholar 

  5. Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  6. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Book  Google Scholar 

  7. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCHVerlag GmbH, pp 247–271

    Google Scholar 

  8. Ketskemety I, Dombi J, Horvai R, Hevesi J, Kozma L (1961) Experimentelle Prüfung des Wawilowschen Gesetzes im Falle Fluoresziender Lösungen. Acta Physica Chem 7:17–21

    Google Scholar 

  9. Kawski A, Piszczek G, Kukliński B, Nowosielski T (1994) Isomerization of diphenyl polyenes. Part VIII. Absorption and fluorescence properties of 1-phenyl-4-diphenylthiophosphinyl butadiene in poly(vinyl alcohol). Z Naturforsch 49a:824–828

    Google Scholar 

  10. Kubicki A (1989) A universal photon-counting measuring system for polarized spectroscopy. Exper Techn Phys 37:329–333

    CAS  Google Scholar 

  11. Bojarski P, Kawski A (1992) The influence of reverse energy transfer on emission anisotropy in two-component viscous solutions. J Fluoresc 2:133–139

    Article  CAS  PubMed  Google Scholar 

  12. Jankowski D, Bojarski P, Kwiek P, Rangełowa-Jankowska S (2010) Chem Phys 373:238–242

    Article  CAS  Google Scholar 

  13. Synak A, Gondek G, Bojarski P, Kułak L, Kubicki A, Szabelski M, Kwiek P (2004) Fluorescence depolarization in the presence of excitation energy migration in partly ordered polymer films. Chem Phys Lett 399:114–119

    Article  CAS  Google Scholar 

  14. Kubicki A, Bojarski P, Grinberg M, Sadownik M, Kukliński B (2006) Time-resolved streak camera system with solid state laser and optical parametric generator in different spectroscopic applications. Optic Comm 263:275–280

    Article  CAS  Google Scholar 

  15. Bojarski C (1974) Nonradiative excitation energy transport and some concentration effects in fluorescent solution. Scientific Dissertations Technical University of Gdansk, 13

    Google Scholar 

  16. Benett RG (1964) Radiationless intermolecular energy transfer. V. Singlet-triplet transfer. J Chem Phys 41:3048–3050

    Article  Google Scholar 

  17. Hameka HF (1967) The triplet state. Cambridge University Press

    Google Scholar 

  18. Ermolaev WL, Bodunov EN, Schveschnikova EB, Szachverdov TA (1977) Nonradiative electronic excitation energy transfer. Nauka (in Russian)

    Google Scholar 

  19. Vassilev RF (1962) Secondary processes in chemiluminescent solutions. Nature 196:668–669

    Article  Google Scholar 

  20. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–851

    Article  CAS  Google Scholar 

  21. Bäckström HL, Sandros K (1958) The quenching of the long-lived fluorescence of biacetyl in solution. Acta Chem Scand 12:823–832

    Article  Google Scholar 

  22. Terenin AN, Ermolaev VL (1952) Sensibilized phosphorescence of organic molecules at low temperature. Intermolecular energy transfer from the excited triplet state. DAN SSSR (in Russian) 85: 547–550

    Google Scholar 

  23. Ermolaev WL, Antipenko BM, Schveschnikova JB, Tachin WS, Schaverdov TA (1970) Molecular photonics. Izd Lenigrad (in Russian)

    Google Scholar 

  24. Parker CA, Hatchard CG (1962) Delayed fluorescence from solutions of anthracene and phenanthrene. Proc R Soc Lond 269:574

    Article  Google Scholar 

  25. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Physik 2:55–75

    Article  Google Scholar 

  26. Förster T (1966) Modern quantum chemistry. vol 3. Academic, New York

    Google Scholar 

  27. Steinberg IZ (1968) Nonradiative energy transfer in systems in which rotatory brownian motion is frozen. J Chem Phys 48:2411–2414

    Article  CAS  Google Scholar 

  28. Maksimow MZ, Rozman I (1962) On the energy transfer in rigid solutions. Opt Spectr 12:606–609

    Google Scholar 

  29. Dale RE, Eisinger J (1976) Intramolecular energy transfer and molecular conformation. Proc Natl Acad Sci USA 73:271–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bojarski C, Dudkiewicz J (1979) Orientation factor in concentration effects due to nonradiative energy transfer in luminescent systems. Chem Phys Lett 67:450–454

    Article  CAS  Google Scholar 

  31. Knoester J, Van Himbergen JE (1986) Theory of concentration depolarization in the presence of orientational correlations. J Chem Phys 84:2990–2998

    Article  CAS  Google Scholar 

  32. Bojarski P, Kułak L, Bojarski C, Kawski A (1995) Nonradiative excitation energy transport in one- component disordered systems. J Fluoresc 5:307–319

    Article  CAS  PubMed  Google Scholar 

  33. Kułak L (2009) Hybrid Monte-Carlo simulations of fluorescence anisotropy decay in three-component donor–mediator–acceptor systems in the presence of energy transfer. Chem Phys Lett 467:435–438

    Article  CAS  Google Scholar 

  34. Bojarski P, Sadownik M, Rangełowa-Jankowska S, Kułak L, Dasiak K (2008) Unusual fluorescence anisotropy spectra of three-component donor–mediator–acceptor systems in uniaxially stretched polymer films in the presence of energy transfer. Chem Phys Lett 456:166–169

    Article  CAS  Google Scholar 

  35. Scully AD, Matsumoto A, Hirayama S (1991) A time-resolved fluorescence study of electronic excitation energy transport in concentrated dye solutions. Chem Phys 157:253–269

    Article  CAS  Google Scholar 

  36. Bojarski C, Kawski A (1959) Über die Bestimmung des kritischen Molekülabstandes bei der Konzentrationsdepolarisation der Fluoreszenz. Ann Phys 5:31–34

    Article  CAS  Google Scholar 

  37. Kusba J, Lakowicz JR (1994) Diffusion modulated energy transfer and quenching: analysis by numerical integration of the diffusion equation in the laplace space. Methods Enzymol 224:216–262

    Article  Google Scholar 

  38. Gryczynski ZI, Lakowicz JR (2005) Basics of fluorescence and FRET. In: Periasamy A, Day R (eds) Molecular imaging: fret microscopy and spectroscopy. Oxford, pp 21–55

    Google Scholar 

  39. Eriksen EL, Ore A (1967) On mathematico-physical models for self-depolarization of fluorescence. Phys Norv 2:159–171

    CAS  Google Scholar 

  40. Jablonski A (1970) Anisotropy of fluorescence of molecules excited by excitation transfer. Acta Phys Pol A38:453–458, Errata (1971) A39, 87

    Google Scholar 

  41. Bojarski C, Domsta J (1971) Theory of the influence of concentration on the luminescence of solid solutions. Acta Phys Acad Sci Hung 30:145–166

    Article  CAS  Google Scholar 

  42. Huber DL (1979) Fluorescence in the presence of traps. Phys Rev B 20:2307–2314

    Article  CAS  Google Scholar 

  43. Huber DL, Hamilton DS, Barnett D (1977) Time-dependent effects in fluorescent line narrowing. Phys Rev B 16:4642–4650

    Article  CAS  Google Scholar 

  44. Huber DL (1987) Transfer and trapping of optical excitation. In: Grassano UM, Terzi N (eds) Excited-state spectroscopy in solids. North-Holland, Amsterdam

    Google Scholar 

  45. Twardowski R, Kusba J, Bojarski C (1982) Donor fluorescence decay in solid solution. Chem Phys 64:239–248

    Article  CAS  Google Scholar 

  46. Twardowski R, Bojarski C (1985) Remarks on the theory of concentration depolarization of fluorescence. J Lumin 33:79–85

    Article  CAS  Google Scholar 

  47. Burstein AI (1985) Quantum yields of selective and non-selective luminescence in solid solutions. J Lumin 34:201–209

    Article  Google Scholar 

  48. Bojarski C (1984) Influence of the reversible energy transfer on the donor fluorescence quantum yield in donor-acceptor systems. Z Naturforsch 39:948–951

    Google Scholar 

  49. Twardowski R, Kusba J (1988) Reversible energy transfer and fluorescence decay in solid solutions. Z Naturforsch 43:627–632

    Google Scholar 

  50. Sienicki K, Winnik MA (1988) Donor-acceptor kinetics in the presence of energy migration. Forward and reverse energy transfer. Chem Phys 121:163–174

    Article  CAS  Google Scholar 

  51. Sienicki K, Mattice WL (1989) Forward and reverse energy transfer in the presence of energy migration and correlations. J Chem Phys 90:6187–6193

    Article  CAS  Google Scholar 

  52. Kulak L, Bojarski C (1992) Direct and reverse energy transport in systems of monomers and imperfect traps: Monte Carlo simulations. J Fluoresc 2:123–131

    Article  CAS  PubMed  Google Scholar 

  53. Haan SW, Zwanzig R (1978) Forster migration of electronic excitation between randomly distributed molecules. J Chem Phys 68:1879–1884

    Article  CAS  Google Scholar 

  54. Gochanour CR, Andersen HC, Fayer MD (1979) Electronic excited state transport in solution. J Chem Phys 70:4254–4271

    Article  CAS  Google Scholar 

  55. Loring RF, Andersen HC, Fayer MD (1982) Electronic excited state transport and trapping in solution. J Chem Phys 76:2015–2027

    Article  CAS  Google Scholar 

  56. Kulak L, Bojarski C (1995) Forward and reverse electronic energy transport and trapping in solution. I. Theory; Forward and reverse electronic energy transport and trapping in solution. II. Numerical results and Monte Carlo simulations. Chem Phys 191:43–66, (1995) 191: 67–86

    Article  CAS  Google Scholar 

  57. Bojarski P, Kulak L (1997) Forward and reverse excitation energy transport in concentrated two-component systems. Chem Phys 220:323–336

    Article  CAS  Google Scholar 

  58. Rangelowa S, Kulak L, Gryczynski I, Sakar P, Bojarski P (2008) Fluorescence anisotropy decay in the presence of multistep energy migration and back transfer in disordered two-component systems. Chem Phys Lett 452:105–109

    Article  CAS  Google Scholar 

  59. Tanizaki Y (1959) Dichroism of dyes in stretched PVA sheet. Bull Chem Soc Jap 32:1362–1363, (1965) 38: 1798–1799

    Article  CAS  Google Scholar 

  60. Bojarski P, Synak A, Kulak L, Sadownik M (2003) Excitation energy migration in uniaxially oriented PVA films. Chem Phys Lett 375:547–552

    Article  CAS  Google Scholar 

  61. Kulak L (2008) Hybrid Monte-Carlo simulations of fluorescence anisotropy decay in disordered two-component systems in the presence of forward and back energy transfer. Chem Phys Lett 457:259–262

    Article  CAS  Google Scholar 

  62. Metropolis N, Rozenbluth A, Rozenbluth M, Teller M, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1093

    Article  CAS  Google Scholar 

  63. Bojarski P, Gryczynski I, Kulak L, Synak A, Barnett A (2006) Excitation energy migration between elongated fluorophores in uniaxially oriented polyvinyl alcohol films. Chem Phys Lett 431:94–99

    Article  CAS  Google Scholar 

  64. Michl J, Thulstrup EW (1986) Spectroscopy with polarized light. VCH, New York

    Google Scholar 

  65. Kawski A, Gryczynski Z (1986) On the determination of transition-moment directions from emission anisotropy measurements. Z Naturforsch 41a:1195–1199

    CAS  Google Scholar 

  66. Gryczynski Z, Kawski A (1987) Relation between the emission anisotropy and the dichroic ratio for solute alignment in stretched polimer films. Z Naturforsch 42a:1396–1398

    Google Scholar 

  67. Synak A, Bojarski P (2005) Transition moment directions of selected carbocyanines from emission anisotropy and linear dichroism measurements in uniaxially stretched polimer films. Chem Phys Lett 416:300–304

    Article  CAS  Google Scholar 

  68. Gryczynski I, Gryczynski Z, Wiczk W, Kusba J, Lakowicz R (1992) Effect of molecular ordering on distance distributions of flexible donor-acceptor pairs. SPIE 1640:622–631

    CAS  Google Scholar 

  69. Hasegawa M, Enomoto S, Hoshi T, Igarashi K, Yamazaki T, Nishimura Y, Speiser Y, Yamazaki I (2002) Intramolecular excitation energy transfer in bichromophoric compounds in stretched polymer films. J Phys Chem B 106:4925–4931

    Article  CAS  Google Scholar 

  70. Szabelski M, Bojarski P, Wiczk W, Gryczynski I (2007) Fluorescence resonance energy transfer in short linear peptides carrying 3-[2-(2-benzofuranyl)benzoxazol-5-yl]-alanine and 3-nitro-l-tyrosine molecules in poly(vinyl alcohol) film. Chem Phys Lett 442:418–423

    Article  CAS  Google Scholar 

  71. Bojarski P, Gryczynski I, Kulak L, Synak A, Bharill S, Rangelowa S, Szabelski M (2007) Multistep energy migration between 3,3’-diethyl-9-methylthiacarbocyanine iodide monomers in uniaxially oriented polymer films. Chem Phys Lett 439:332–336

    Article  CAS  Google Scholar 

  72. Bojarski P, Synak A, Kulak L, Baszanowska E, Kubicki A, Grajek H, Szabelski M (2006) Excitation energy migration in uniaxially oriented polymer films: a comparison between strongly and weakly organized systems. Chem Phys Lett 421:91–95

    Article  CAS  Google Scholar 

  73. Heelis PF (1982) The photophysical and photochemical properties of flavins (isoalloxazines). Chem Soc Rev 11:15–39

    Article  CAS  Google Scholar 

  74. Ninnemann H (1980) Blue light photoreceptors. Bio Sci 30:166–170

    CAS  Google Scholar 

  75. Gabrys H (1985) Chloroplast movement in Mougeotia induced by blue light pulses. Planta 166:134–140

    Article  CAS  PubMed  Google Scholar 

  76. Tian Ch-H, Liu D-J, Gronheid R, Van der Auweraer M, De Schryver FC (2004) Mesoscopic organization of two-dimensional j-aggregates of thiacyanine in langmuir-schaefer films. Langmuir 20:11569–11576

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi D, Oda H, Izumi T, Hirohashi R (2005) Substituent effects on aggregation phenomena in aqueous solution of thiacarbocyanine dyes. Dyes Pigments 66:1–6

    Article  CAS  Google Scholar 

  78. Bojarski P, Matczuk A, Bojarski C, Kawski A, Kuklinski B, Zurkowska G, Diehl H (1996) Fluorescent dimers of rhodamine 6G in concentrated ethylene glycol solution. Chem Phys Lett 210:485–499

    CAS  Google Scholar 

  79. Bojarski P (1997) Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films. Chem Phys Lett 278:225–232

    Article  CAS  Google Scholar 

  80. Bojarski P, Kulak L (1997) Nonradiative excitation energy transport between monomers and fluorescent dimers of rhodamine 6G in ethylene glycol. Asian J Spectros 1:107–119

    CAS  Google Scholar 

  81. Grajek H, Zurkowska G, Bojarski P, Kuklinski B, Smyk B, Drabant R, Bojarski C (1998) Spectroscopic manifestations of flavomononucleotide dimers in polyvinyl alcohol films. Biochim Biophys Acta 1384:253–267

    Article  CAS  PubMed  Google Scholar 

  82. Bojarski P, Kulak L (1998) Forward and reverse excitation energy transport between monomers and fluorescent dimers of rhodamine 6 G in polyvinyl alcohol films. Asian J Spectros 2:91–102

    CAS  Google Scholar 

  83. Bojarski P, Matczuk A, Kulak L, Bojarski C (1999) Quantitative analysis of concentration fluorescence quenching in condensed systems. Asian J Spectros 5:1–21

    Google Scholar 

  84. Bojarski P, Grajek H, Zurkowska G, Smyk B, Kuklinski B, Drabent R (1999) Concentration quenching of flavomononucleotide in polyvinyl alcohol films. J Fluoresc 3(4):391–396

    Article  Google Scholar 

  85. Bojarski P (2000) Temperature effect on dimerization constant of dye molecules in polyvinyl alcohol films. Asian J Spectrosc 4:57–66

    CAS  Google Scholar 

  86. Bojarski P, Kulak L, Grajek H, Zurkowska G, Kaminska A, Kuklinski B, Bojarski C (2003) Excitation energy transport and trapping in concentrated solid solutions of flavomononucleotide. Biochim Biophys Acta 1619:201–208

    Article  CAS  PubMed  Google Scholar 

  87. Synak A, Bojarski P, Gryczynski I, Gryczynski Z, Rangelowa-Jankowska S, Kulak L, Sadownik M, Kubicki A, Koprowska E (2008) Aggregation and excitation trapping of 3,3’-diethyl-9-methylthiacarbocyanine iodide in disordered and uniaxially oriented polymer films. Chem Phys Lett 461:222–225

    Article  CAS  Google Scholar 

  88. Drobizhev M, Sigel Ch, Rebane A (2000) Picosecond fluorescence decay and exciton dynamics in a new far-red molecular J-aggregate system. J Luminesc 86:107–116

    Article  CAS  Google Scholar 

  89. Janssens G, Touhari F, Gerritsen JW, Van Kempen H, Callant P, Deroover G, Vanderbroucke D (2001) Chemical structure, aggregate structure and optical properties of adsorbed dye molecules investigated by scanning tunneling microscopy. Chem Phys Lett 344:1–6

    Article  CAS  Google Scholar 

  90. Zakharova GV, Kombaev AR, Chibisov AK (2004) J Aggregation of meso-ethylsubstituted carbocyanine dyes in polymer films. High Energy Chem 38:180–183

    Article  CAS  Google Scholar 

  91. Del Monte F, Levy D (1999) Identification of oblique and coplanar inclined fluorescent J-dimers in rhodamine 110 doped sol-gel-glasses. J Phys Chem 103:8080–8086

    Article  CAS  Google Scholar 

  92. Lopez-Arbeloa F, Martinez-Martinez V, Banuelos-Prieto J, Lopez-Arbeloa I (2002) Adsorption of rhodamine 3B dye in saponite colloidal particles in aqueous suspensions. Langmuir 18:2658–2664

    Article  CAS  Google Scholar 

  93. Ferrer ML, del Monte F, Levy D (2003) Rhodamine 19 fluorescent dimers resulting from dye aggregation on the porous surface of sol-gel silica glasses. Langmuir 19:2782–2786

    Article  CAS  Google Scholar 

  94. Ferrer ML, del Monte F (2005) Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses. J Phys Chem 109:80–86

    Article  CAS  Google Scholar 

  95. Sadownik M, Bojarski P (2004) The effect of intermolecular donor–acceptor energy transfer on emission anisotropy in uniaxially oriented polymer films. Chem Phys Lett 396:293–297

    Article  CAS  Google Scholar 

  96. Sadownik M, Bojarski P, Kwiek P, Rangelowa S (2008) Energy transfer between unlike fluorophores in uniaxially oriented polymer films monitored by time – resolved and steady – state emission anisotropy. Opt Mater 30:810–813

    Article  CAS  Google Scholar 

  97. Bojarski P, Sadownik M, Kułak L, Rangełowa-Jankowska S, Synak A, Jankowski D, Gryczynski I, Grobelna P, Kubicki A, Directional energy transfer and acceptor fluorescence repolarization in two-component anisotropic polymer films, Chem Phys (submitted)

    Google Scholar 

  98. Sadownik M (2009) Nonradiative excitation energy transfer in two and three component systems of controllable degree. PhD thesis, University of Gdansk (in Polish)

    Google Scholar 

  99. Vassilev RF (1963) Spin-orbit coupling and intermolecular energy transfer. Nature 200:773–774

    Article  CAS  Google Scholar 

  100. Kawski A, Gryczynski Z (1987) Determination of transition-moment directions from photoselection in partially oriented systems. Z Naturforsch 42a:808–812

    Google Scholar 

  101. Gryczynski Z, Kawski A (1988) Directions of the electronic transition moments in dioxide-p-terphenyl. Z Naturforsch 43a:193–195

    Google Scholar 

  102. Rangełowa-Jankowska S, Kułak L, Bojarski P (2008) Nonradiative long range energy transfer in donor–acceptor systems with excluded volume. Chem Phys Lett 460:306–310

    Google Scholar 

Download references

Acknowledgment

This paper has been supported by the grant: NR 15 0029/2009. S.R.J. has been supported by the European Social Fund and Foundation for Development of the University of Gdańsk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bojarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bojarski, P., Synak, A., Kułak, L., Rangelowa-Jankowska, S., Kubicki, A., Grobelna, B. (2012). Förster Resonance Energy Transfer and Trapping in Selected Systems: Analysis by Monte-Carlo Simulation. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics