Skip to main content

Mass Spectrometry-Based Microbial Metabolomics

  • Protocol
  • First Online:
Microbial Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 881))

Abstract

Through the characterization of metabolic pathways, metabolomics is able to illuminate the activities of a cell at the functional level. However, the metabolome, which is comprised of hundreds of chemically diverse metabolites, is rather difficult to monitor. Mass spectrometry (MS)-based profiling methods are increasingly being utilized for this purpose. To this end, MS is often coupled to the separation techniques gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). The mass-based selectivity that the MS provides, together with the chromatographic or electrophoretic separation of analytes, creates hyphenated techniques that are ideally suited to the measurement of large numbers of metabolites from microbial extracts. In this chapter, we describe GC-MS, LC-MS, and CE-MS methods that are applicable to microbial metabolomics experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Villas-Bôas SG, Roessner U, Hansen MAE, Smedsgaard J, Nielsen J (2007) Metabolome analysis: an introduction. Wiley, Hoboken

    Google Scholar 

  2. Warwick BD, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  Google Scholar 

  3. Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16

    Article  PubMed  CAS  Google Scholar 

  4. Bender DA (2005) Perspective. The promise of metabolomics. J Sci Food Agric 85:7–9

    Article  Google Scholar 

  5. Griffin JL (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos Trans R Soc Lond B Biol Sci 359:857–871

    Article  PubMed  CAS  Google Scholar 

  6. Borodina I, Nielsen J (2005) From genomes to in silico cells via metabolic networks. Curr Opin Biotechnol 16:350–355

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt C (2004) Metabolomics takes its place as latest up-and-coming “omic” science. J Natl Cancer Inst 96:732–734

    Article  PubMed  Google Scholar 

  8. Brock TD, Madigan MT, Martinko JM, Parker J (1994) Brock biology of microorganisms. Prentice Hall, Englewood Cliffs

    Google Scholar 

  9. Skoog DA, Holler FJ, Nieman TA (2006) Principles of instrumental analysis, 6th edn. Brooks Cole, Pacific Grove

    Google Scholar 

  10. Harris DC (2003) Quantitative chemical analysis, 6th edn. W.H. Freeman and Company, New York

    Google Scholar 

  11. Fjeldsted J (2003) Time-of-flight mass spectrometry. Technical overview. http://www.chem.agilent.com/Library/technicaloverviews/Public/5989-0373EN%2011-Dec-2003.pdf. Accessed 25 June 2007

  12. de Hoffman E, Stroobant V (2002) Mass spectrometry. Principles and applications, 2nd edn. Wiley, New York

    Google Scholar 

  13. Stewart II (1999) Electrospray mass spectrometry: a tool for elemental speciation. Spectrochim Acta B 54:1649–1695

    Article  Google Scholar 

  14. Smyth WF (1999) The use of electrospray mass spectrometry in the detection and determination of molecules of biological significance. Trends Anal Chem 18:335–346

    Article  CAS  Google Scholar 

  15. Smith JN, Flagan RC, Beauchamp JL (2002) Droplet evaporation and discharge dynamics in electrospray ionization. J Phys Chem A 106:9957–9967

    Article  CAS  Google Scholar 

  16. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int J Mass Spectrom Ion Process 136:167–180

    Article  CAS  Google Scholar 

  17. Fenn JB (1993) Ion formation from charged droplets: roles of geometry, energy, and time. J Am Soc Mass Spectrom 4:524–535

    Article  CAS  Google Scholar 

  18. Garrod JW, Jacob P III (1999) Analytical determination of nicotine and related compounds and their metabolites. Elsevier Science B.V., Amsterdam, The Netherlands

    Google Scholar 

  19. Hübschmann HJ (2009) Handbook of GC/MS. Wiley, Weinheim

    Google Scholar 

  20. McLafferty FW (1993) Interpretation of mass spectra. University Science Books, Berkeley

    Google Scholar 

  21. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  PubMed  CAS  Google Scholar 

  22. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  23. Willoughby R, Sheehan E, Mitrovich S (1998) A global view of LC/MS: how to solve your most challenging analytical problems, 1st edn. Global View Publishing, Pittsburgh

    Google Scholar 

  24. Jhonstone RAW, Rose ME (1996) Mass spectrometry for chemists and biochemists, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Smith RM, Busch KL (1999) Understanding mass spectra—a basic approach. Wiley, New York

    Google Scholar 

  26. Soga T, Ohashi Y, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494

    Article  PubMed  CAS  Google Scholar 

  27. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  PubMed  CAS  Google Scholar 

  28. Stöckigt J, Sheludko Y, Unger M, Gerasimenko I, Warzecha H, Stöckigt D (2002) High-performance liquid chromatographic, capillary electrophoretic and capillary electrophoretic-electrospray ionisation mass spectrometric analysis of selected alkaloid groups. J Chromatogr A 967:85–113

    Article  PubMed  Google Scholar 

  29. Jonscher KR, Yates JR III (1997) The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal Biochem 244:1–15

    Article  PubMed  CAS  Google Scholar 

  30. Weickhardt C, Moritz F, Grotemeyer J (1996) Time-of-flight mass spectrometry: state-of the-art in chemical analysis and molecular science. Mass Spectrom Rev 15:139–162

    Article  CAS  Google Scholar 

  31. McIntire D (2004) Effect of resolution and mass accuracy on empirical formula confirmation and identification of unknowns. Technical overview. http://www.chem.agilent.com/Library/technicaloverviews/Public/5989-1052EN%2014-May-2004.pdf. Accessed 20 April 2005

  32. Giddings JC (2002) Dynamics of chromatography: principles and theory. CRC Press, Danvers

    Google Scholar 

  33. Baker DR (1995) Capillary electrophoresis. Wiley, New York

    Google Scholar 

  34. Fiehn O (2008) Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Anal Chem 27:261–269

    CAS  Google Scholar 

  35. Koek MM, Muilwijk B, van Stee LLP, Hankemeier T (2008) Higher mass loadability in comprehensive two-dimensional gas chromatography-mass spectrometry for improved analytical performance in metabolomics analysis. J Chromatogr A 1186:420–429

    Article  PubMed  CAS  Google Scholar 

  36. Blau K, Halket JM (eds) (1993) Handbook of derivatives for chromatography. Wiley, New York

    Google Scholar 

  37. Kanani HH, Klappa MI (2007) Data correction strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metab Eng 9:39–51

    Article  PubMed  CAS  Google Scholar 

  38. Little JL (1999) Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J Chromatogr A 844:1–22

    Article  PubMed  CAS  Google Scholar 

  39. Kanani H, Chrysanthopoulos PK, Klapa MI (2008) Standardizing GC-MS metabolomics. J Chromatogr B 871:191–201

    Article  CAS  Google Scholar 

  40. Halket JM, Zaikin VG (2003) Derivatization in mass spectrometry-1. Silylation. Eur J Mass Spectrom 9:1–21

    Article  CAS  Google Scholar 

  41. Liebeke M, Wunder A, Lalk M (2010) A rapid microwave-assisted derivatization of bacterial metabolome samples for gas chromatography/mass spectrometry analysis. Anal Biochem 401:312–314

    Article  PubMed  CAS  Google Scholar 

  42. Phillips JB, Beens J (1999) Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J Chromatogr A 856:331–347

    Article  PubMed  CAS  Google Scholar 

  43. Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27:101–124

    Article  PubMed  CAS  Google Scholar 

  44. Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE (2006) Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Anal Chem 78:2700–2709

    Article  PubMed  CAS  Google Scholar 

  45. Mohler RE, Dombek KM, Hoggard JC, Pierce KM, Young ET, Synovec RE (2007) Comprehensive analysis of yeast metabolite GC × GC-TOFMS data: combining discovery-mode and deconvolution chemometric software. Analyst 132:756–767

    Article  PubMed  CAS  Google Scholar 

  46. Lu H, Liang Y, Dunn WB, Shen H, Kell DB (2008) Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends Anal Chem 27:215–227

    Article  CAS  Google Scholar 

  47. Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5:435–458

    Article  PubMed  CAS  Google Scholar 

  48. Mac-Mod Analytical Inc. http://www.mac-mod.com/pb/poplc-pb.html. Accessed 21 June 2010

  49. Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography. Wiley, Hoboken

    Google Scholar 

  50. Guillarme D, Schappler J, Rudaz S, Veuthey J-L (2010) Coupling ultra-high-pressure liquid chromatography with mass spectrometry. Trends Anal Chem 29:15–27

    Article  CAS  Google Scholar 

  51. Superficially porous HPLC columns and column overload, Technical Overview (2010) 5990-6001EN. http://www.agilent.com/chem

  52. Cunliffe JM, Maloney TD (2007) Fused-core particle technology as an alternative to sub-2-μm particles to achieve high separation efficiency with low backpressure. J Sep Sci 30:3104–3109

    Article  PubMed  CAS  Google Scholar 

  53. Aurand CR, Bell DS, Lamb T, Bell-Pedersen D (2010) Metabolomic profiling of Neurospora crassa fungi using HILIC and reversed-phase LC-MS. Reporter US 28(3):14–15. http://www.sigmaaldrich.com/technical-documents/articles/reporter-us/metabolomic-profiling.html

    Google Scholar 

  54. Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80:62–76

    Article  PubMed  CAS  Google Scholar 

  55. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  PubMed  CAS  Google Scholar 

  56. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  PubMed  CAS  Google Scholar 

  57. Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17:37–50

    Article  PubMed  CAS  Google Scholar 

  58. Buescher JM, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography—tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82:4403–4412

    Article  PubMed  CAS  Google Scholar 

  59. Ding J, Vouros P (1999) Recent developments in interfaces and applications. Anal Chem 71:378A–385A

    Article  PubMed  CAS  Google Scholar 

  60. Chang YZ, Her GR (2000) Sheathless capillary electrophoresis/electrospray mass spectrometry using a carbon-coated fused-silica capillary. Anal Chem 72:626–630

    Article  PubMed  CAS  Google Scholar 

  61. Banks JF (1997) Recent advances in capillary electrophoresis/electrospray/mass spectrometry. Electrophoresis 18:2255–2266

    Article  PubMed  CAS  Google Scholar 

  62. Tomer KB (2001) Separations combined with mass spectrometry. Chem Rev 101:297–328

    Article  PubMed  CAS  Google Scholar 

  63. Lausecker B, Hopfgartner G, Hesse M (1998) Capillary electrophoresis-mass spectrometry coupling versus micro-high-performance liquid chromatography-mass spectrometry coupling: a case study. J Chromatogr B 718:1–13

    Article  CAS  Google Scholar 

  64. Baidoo EK, Benke PI, Neusüss C, Pelzing M, Kruppa G, Leary JA, Keasling JD (2008) Capillary electrophoresis-Fourier transform ion cyclotron resonance mass spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method. Anal Chem 80:3112–3122. Copyright © 2008, with permission from American Chemical Society

    Google Scholar 

  65. Harada K, Fukusaki E, Kobayashi A (2006) Pressure-assisted capillary electrophoresis mass spectrometry using combination of polarity reversion and electroosmotic flow for metabolomics anion analysis. J Biosci Bioeng 101:403–409

    Article  PubMed  CAS  Google Scholar 

  66. Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y, Tomita M, Soga T (2007) Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst 4:135–147

    Article  PubMed  Google Scholar 

  67. Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173

    Article  PubMed  CAS  Google Scholar 

  68. Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74:6224–6229

    Article  PubMed  CAS  Google Scholar 

  69. Voyksner RD, Lee H (1999) Improvements in LC/electrospray ion trap mass spectrometry performance using an off-axis nebulizer. Anal Chem 71:1441–1447

    Article  PubMed  CAS  Google Scholar 

  70. Soga T, Ueno Y, Naraoka H, Ohasi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  PubMed  CAS  Google Scholar 

  71. Soga T, Ishikawa T, Igarashi S, Sugawara K, Kakazu Y, Tomita M (2007) Analysis of nucleotides by pressure-assisted capillary electrophoresis-mass spectrometry using silanol mask technique. J Chromatogr A 1159:125–133

    Article  PubMed  CAS  Google Scholar 

  72. Steuer R, Morgenthal K, Weckwerth W, Selbig J (2006) A gentle guide to the analysis of metabolomics data. In: Weckwerth W (ed) Metabolomics: methods and protocols, vol 358, Methods in molecular biology. Springer, New York

    Google Scholar 

  73. Burgi DS, Chien RL (1991) Optimization in sample stacking for high-performance capillary electrophoresis. Anal Chem 63:2042–2047

    Article  CAS  Google Scholar 

  74. Van Berkel GJ (1997) The electrolytic nature of electrospray. In: Cole RB (ed) Electrospray ionization mass spectrometry: fundamentals, instrumentation, and applications. Wiley, New York

    Google Scholar 

  75. Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann H-P, Tomita M (2009) Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem 81:6165–6174

    Article  PubMed  CAS  Google Scholar 

  76. Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A 103:19302–19307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work conducted by ENIGMA—Ecosystems and Networks Integrated with Genes and Molecular Assemblies—was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

This work was also part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy through Contract No. DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D. Keasling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baidoo, E.E.K., Benke, P.I., Keasling, J.D. (2012). Mass Spectrometry-Based Microbial Metabolomics. In: Navid, A. (eds) Microbial Systems Biology. Methods in Molecular Biology, vol 881. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-827-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-827-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-826-9

  • Online ISBN: 978-1-61779-827-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics