Skip to main content

Subretinal Delivery and Electroporation in Pigmented and Nonpigmented Adult Mouse Eyes

  • Protocol
  • First Online:
Retinal Development

Abstract

Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10–20 μl in the human eye and less than 1 μl in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective. Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past 10 years (Johnson et al. Mol Vis 14: 2211–2226, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yasukawa T, Ogura Y, Sakurai E, Tabata Y, Kimura H (2005) Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Deliv Rev 57:2033–2046

    Article  PubMed  CAS  Google Scholar 

  2. Schorderet DF, Manzi V, Canola K, Bonny C, Arsenijevic Y, Munier FL, Maurer F (2005) D-TAT transporter as an ocular peptide delivery system. Clin Exp Ophthalmol 33:628–635

    Article  Google Scholar 

  3. Maia M, Kellner L, de Juan E Jr, Smith R, Farah ME, Margalit E, Lakhanpal RR, Grebe L, Au Eong KG, Humayun MS (2004) Effects of indocyanine green injection on the retinal surface and into the subretinal space in rabbits. Retina 24:80–91

    Article  PubMed  Google Scholar 

  4. Shen WY, Rakoczy PE (2001) Uptake dynamics and retinal tolerance of phosphorothioate oligonucleotide and its direct delivery into the site of choroidal neovascularization through subretinal administration in the rat. Antisense Nucleic Acid Drug Dev 11:257–264

    Article  PubMed  CAS  Google Scholar 

  5. Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1999) Cellular response in subretinal neovascularization induced by bFGF-impregnated microspheres. Invest Ophthalmol Vis Sci 40:524–528

    PubMed  CAS  Google Scholar 

  6. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma J-X, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  PubMed  CAS  Google Scholar 

  7. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  PubMed  CAS  Google Scholar 

  8. Hauswirth WW (2005) The consortium project to treat RPE65 deficiency in humans. Retina 25:S60

    Article  PubMed  Google Scholar 

  9. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang J-J, Sumaroka A, Windsor EAM, Wilson JM, Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 105:15112–15117

    Article  PubMed  CAS  Google Scholar 

  10. Berglin LC, Schmack I, Holley G, Nie X, Yang H, Grossniklaus HE, Edelhauser HF (2005) Human RPE ex vivo ‘flatmount technique’ for comparative morphometric and tissue culture survival analysis (mouse) using alizarin red staining, live/dead cell analysis and epifluorescent microscopy. Invest Ophthalmol Vis Sci 46:3064

    Google Scholar 

  11. Lai CM, Yu MJ, BrankovM BNL, Zhou X, Redmond TM, Narfstrom K, Rakoczy PE (2004) Recombinant adeno-associated virus type 2-mediated gene delivery into the Rpe65−/− knockout mouse eye results in limited rescue. Genet Vaccines Ther 2:3

    Article  PubMed  Google Scholar 

  12. Pang J-J, Chang B, Hawes NL, Hurd RE, Davisson MT, Li J, Noorwez SM, Malhotra R, McDowell JH, Kaushal S, Hauswirth WW, Nusinowitz S, Thompson DA, Heckenlively JR (2005) Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol Vis 11:152–162

    PubMed  CAS  Google Scholar 

  13. Nusinowitz S, Ridder WH III, Pang JJ, Chang B, Noorwez SM, Kaushal S, Hauswirth WW, Heckenlively JR (2006) Cortical visual function in the rd12 mouse model of Leber congenital amarousis (LCA) after gene replacement therapy to restore retinal function. Vision Res 46:3926–3934

    Article  PubMed  CAS  Google Scholar 

  14. Batten ML, Imanishi Y, Tu DC, Doan T, Zhu L, Pang J, Glushakova L, Moise AR, Baehr W, Van Gelder RN, Hauswirth WW, Rieke F, Palczewski K (2005) Pharmacological and rAAV gene therapy rescue of visual functions in a blind mouse model of Leber congenital amaurosis. PLoS Med 2:e333

    Article  PubMed  Google Scholar 

  15. Bainbridge JW, Mistry A, Schlichtenbrede FC, Smith A, Broderick C, De Alwis M, Georgiadis A, Taylor PM, Squires M, Sethi C, Charteris D, Thrasher AJ, Sargan D, Ali RR (2003) Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Ther 10:1336–1344

    Article  PubMed  CAS  Google Scholar 

  16. Dinculescu A, Glushakova L, Min S-H, Hauswirth WW (2005) Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16:649–663

    Article  PubMed  CAS  Google Scholar 

  17. Balaggan KS, Binley K, Esapa M, MacLaren RE, Iqball S, Duran Y, Pearson RA, Kan O, Barker SE, Smith AJ, Bainbridge JW, Naylor S, Ali RR (2006) EIAV vector-mediated delivery of endostatin or angiostatin inhibits angiogenesis and vascular hyperpermeability in experimental CNV. Gene Ther 13:1153–1165

    Article  PubMed  CAS  Google Scholar 

  18. Bemelmans A-P, Bonnel S, Houhou L, Dufour N, Nandrot E, Helmlinger D, Sarkis C, Abitbol M, Mallet J (2005) Retinal cell type expression specificity of HIV-1-derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter. J Gene Med 7:1367–1374

    Article  PubMed  CAS  Google Scholar 

  19. Doi K, Hargitai J, Kong J, Tsang SH, Wheatley M, Chang S, Goff S, Gouras P (2002) Lentiviral transduction of green fluorescent protein in retinal epithelium: evidence of rejection. Vision Res 42:551–558

    Article  PubMed  CAS  Google Scholar 

  20. Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzra D, Behar-Cohen F (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58:1224–1242

    Article  PubMed  CAS  Google Scholar 

  21. Kamei M, Tano Y (2009) Tissue plasminogen activator-assisted vitrectomy: surgical drainage of submacular hemorrhage. Dev Ophthalmol 44:82–88

    Article  PubMed  CAS  Google Scholar 

  22. Sandhu SS, Manvikar S, Steel DHW (2010) Displacement of submacular hemorrhage associated with age-related macular degeneration using vitrectomy and submacular tPA injection followed by intravitreal ranibizumab. Clin Ophthalmol 4:637–642

    PubMed  Google Scholar 

  23. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84:156–160

    Article  PubMed  CAS  Google Scholar 

  24. Gekeler F, Kobuch K, Schwahn HN, Stett A, Shinoda K, Zrenner E (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242:587–596

    Article  PubMed  Google Scholar 

  25. Pfeffer B, Wiggert B, Lee L, Zonnenberg B, Newsome D, Chader G (1983) The presence of a soluble interphotoreceptor retinol-binding protein (IRBP) in the retinal interphotoreceptor space. J Cell Physiol 117:333–341

    Article  PubMed  CAS  Google Scholar 

  26. Gerding H (2007) A new approach towards a minimal invasive retina implant. J Neural Eng 4:S30–S37

    Article  PubMed  CAS  Google Scholar 

  27. Timmers AM, Zhang H, Squitieri A, Gonzalez-Pola C (2001) Subretinal injections in rodent eyes: effects on electrophysiology and histology of rat retina. Mol Vis 7:131–137

    PubMed  CAS  Google Scholar 

  28. Pachnis V, Pevny L, Rothstein R, Costantini F (1990) Transfer of a yeast artificial chromosome carrying human DNA from Saccharomyces cerevisiae into mammalian cells. Proc Natl Acad Sci USA 87:5109–5113

    Article  PubMed  CAS  Google Scholar 

  29. Reeves RH, Cabin DE, Lamb B (2001) Introduction of large insert DNA into mammalian cells and embryos. Curr Protoc Hum Genet/editorial board, Jonathan LH et al. Chapter 5: Unit 5.12

    Google Scholar 

  30. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  PubMed  CAS  Google Scholar 

  31. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed  CAS  Google Scholar 

  32. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587

    Article  PubMed  CAS  Google Scholar 

  33. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, Aoki M, Ogihara T, Yasufumi K, Morishita R (2002) Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239

    Article  PubMed  CAS  Google Scholar 

  34. O’Brien JA, Holt M, Whiteside G, Lummis SC, Hastings MH (2001) Modifications to the hand-held gene gun: improvements for in vitro biolistic transfection of organotypic neuronal tissue. J Neurosci Methods 112:57–64

    Article  PubMed  Google Scholar 

  35. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed  CAS  Google Scholar 

  36. Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    Article  PubMed  CAS  Google Scholar 

  37. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  38. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37

    Article  PubMed  CAS  Google Scholar 

  39. Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051

    PubMed  CAS  Google Scholar 

  40. Zheng QA, Chang DC (1991) High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim Biophys Acta 1088:104–110

    Article  PubMed  CAS  Google Scholar 

  41. Li S, Tseng WC, Stolz DB, Wu SP, Watkins SC, Huang L (1999) Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther 6:585–594

    Article  PubMed  CAS  Google Scholar 

  42. Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 14:2211–2226

    PubMed  CAS  Google Scholar 

  43. Bins AD, van Rheenen J, Jalink K, Halstead JR, Divecha N, Spencer DM, Haanen JB, Schumacher TN (2007) Intravital imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnol 7:2

    Article  PubMed  Google Scholar 

  44. Bodenstein L, Sidman RL (1987) Growth and development of the mouse retinal pigment epithelium. I. Cell and tissue morphometrics and topography of mitotic activity. Dev Biol 121:192–204

    Article  PubMed  CAS  Google Scholar 

  45. Berglin L, Mandell K, Schmack I, Holley G, Grossniklaus H, Parkos C, Edelhauser H (2006) Reduction of retinal pigment epithelium (RPE) background autofluorescence with sudan black enhances visualization of fluorescently-labeled proteins in ex vivo RPE flatmounts. Invest Ophthalmol Vis Sci 2006, 46:2880

    Google Scholar 

  46. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  47. Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Eye Institute (R01EY016470, R01EY014026, P30EY006360, R24EY017045, T32EY007092), an unrestricted grant to the Department of Ophthalmology at Emory University from Research to Prevent Blindness, Inc., the Foundation Fighting Blindness, Fight for Sight, The Katz Foundation, and the Intramural Research Program of the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Nickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nickerson, J.M. et al. (2012). Subretinal Delivery and Electroporation in Pigmented and Nonpigmented Adult Mouse Eyes. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics