Skip to main content

Waterborne Pathogen Detection Using a Magnetoresistive Immuno-Chip

  • Protocol
  • First Online:
Molecular Biological Technologies for Ocean Sensing

Abstract

Magnetoresistive bioassays, in which the traditional optical labels are replaced by magnetic labels, hold the promise of increased response speed, sensitivity, and portability in the detection system. These properties make these systems ideal for the monitoring of microbiological quality of drinking water or hydric resources. In this chapter, we demonstrate the applicability of magnetoresistive biosensors for the detection of the environmental pathogen Salmonella typhimurium. The approach comprises the coating of magnetic nanoparticles with polyclonal antibodies to Salmonella spp. in order to specifically capture and concentrate the Salmonella cells from solution. Once captured, the magnetically labeled cells are recognized by a second immuno-recognition on top of the sensor’s surface through the use of specific monoclonal antibodies. Quantitative data are then obtained using an electronic platform to measure the resistance change of the sensor due to presence of the magnetic particles.

Sofia S.A. Martins and Verónica C. Martins contributed equally for this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler JE (2000) Enzyme-linked immunosorbent assay (reprinted from Immunochemistry, pg 759–803, 1994). J Immunoassay 21:165–209

    Article  PubMed  CAS  Google Scholar 

  2. Tsai W-C, Li I-C (2009) SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensor Actuator B Chem 136:8–12

    Article  Google Scholar 

  3. Kim G-H, Rand AG, Letcher SV (2003) Impedance characterization of a piezoelectric immunosensor part II: Salmonella typhimurium detection using magnetic enhancement. Biosens Bioelectron 18:91–99

    Article  PubMed  CAS  Google Scholar 

  4. Marquette CA, Blum LJ (2006) State of the art and recent advances in immunoanalytical systems. Biosens Bioelectron 21:1424–1433

    Article  PubMed  CAS  Google Scholar 

  5. De Palma R, Reekmans G, Laureyn W, Borghs G, Maes G (2007) The optimization of magnetosandwich assays for the sensitive and specific detection of proteins in serum. Anal Chem 79:7540–7548

    Article  PubMed  Google Scholar 

  6. Dittmer WU, de Kievit P, Prins MWJ, Vissers JLM, Mersch MEC, Martens MFWC (2008) Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation. J Immunol Methods 338:40–46

    Article  PubMed  CAS  Google Scholar 

  7. Liu G, Wang J, Lin Y, Wang J (2008) Nanoparticle-based biosensors and bio-assays. In: Zhang X, Ju H, Wang J (eds) Electrochemical sensors, biosensors and their biomedical applications. Academic, San Diego, pp 441–457

    Chapter  Google Scholar 

  8. Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nano Today 1:28–37

    Article  Google Scholar 

  9. Suter M, Butler JE (1986) The immunochemistry of sandwich ELISAS. 2. A novel system prevents the denaturation of capture antibodies. Immunol Lett 13:313–316

    Article  PubMed  CAS  Google Scholar 

  10. Domen PL, Nevens JR, Mallia AK, Hermanson GT, Klenk DC (1990) Site-directed immobilization of proteins. J Chromatogr 510:293–302

    Article  PubMed  CAS  Google Scholar 

  11. Endo N, Umemoto N, Kato Y, Takeda Y, Hara T (1987) A novel covalent modification of antibodies at their amino-groups with retention of antigen-binding activity. J Immunol Methods 104:253–258

    Article  PubMed  CAS  Google Scholar 

  12. Peluso P, Wilson DS, Do D, Tran H, Venkatasubbaiah M, Quincy D, Heidecker B, Poindexter K, Tolani N, Phelan M, Witte K, Jung LS, Wagner P, Nock S (2003) Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal Biochem 312:113–124

    Article  PubMed  CAS  Google Scholar 

  13. Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B 722:11–31

    Article  CAS  Google Scholar 

  14. Hoffman WL, Oshannessy DJ (1988) Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. J Immunol Methods 112:113–120

    Article  PubMed  CAS  Google Scholar 

  15. Oshannessy DJ, Hoffman WL (1987) Site-directed immobilization of glycoproteins on hydrazide-containing solid supports. Biotechnol Appl Biochem 9:488–496

    CAS  Google Scholar 

  16. Brogan KL, Wolfe KN, Jones PA, Schoenfisch MH (2003) Direct oriented immobilization of F(ab′) antibody fragments on gold. Anal Chim Acta 496:73–80

    Article  CAS  Google Scholar 

  17. Jung Y, Jeong JY, Chung BH (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701

    Article  PubMed  CAS  Google Scholar 

  18. Graham DL, Ferreira HA, Freitas PP, Cabral JMS (2003) High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens Bioelectron 18:483–488

    Article  PubMed  CAS  Google Scholar 

  19. Ferreira HA, Feliciano N, Graham DL, Clarke LA, Amaral MD, Freitas PP (2005) Rapid DNA hybridization based on ac field focusing of magnetically labeled target DNA. Appl Phys Lett 87:013901–013903

    Article  Google Scholar 

  20. Gijs M (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    CAS  Google Scholar 

  21. Janssen XJA, van Ijzendoorn LJ, Prins MWJ (2008) On-chip manipulation and detection of magnetic particles for functional biosensors. Biosens Bioelectron 23:833–838

    Article  PubMed  CAS  Google Scholar 

  22. van der Wijngaart W, Andersson H, Stemme G (2003) Handling of beads in microfluidic devices for biotech applications. In: Oosterbroek RE, van den Albert B (eds) Lab-on-a-chip. Elsevier, Amsterdam, pp 187–204

    Chapter  Google Scholar 

  23. Wirix-Speetjens R, Fyen W, Xu K, De Boeck J, Borghs G (2005) On-chip magnetic particle transport: where physics, chemistry and biology meet. In: Magnetics Conference, 2005 INTERMAG Asia 2005. Digests of the IEEE International, pp 521–522

    Google Scholar 

  24. Tartaj P, Morales MP, González-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2005) Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 290–291:28–34

    Article  Google Scholar 

  25. Grüttner C, Rudershausen S, Teller J (2001) Improved properties of magnetic particles by combination of different polymer materials as particle matrix. J Magn Magn Mater 225:1–7

    Article  Google Scholar 

  26. Wu J-H, Ko S, Liu H, Kim S, Ju J, Kim Y (2007) Sub nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater Lett 61:3124–3129

    Article  CAS  Google Scholar 

  27. Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L, Piedade M, Freitas PP, Fonseca LP (2009) Femtomolar limit of detection with a magnetoresistive biochip. Biosens Bioelectron 24:2690–2695

    Article  PubMed  CAS  Google Scholar 

  28. Germano J, Martins V, Cardoso F, Almeida T, Sousa L, Freitas P, Piedade M (2009) A portable and autonomous magnetic detection platform for biosensing. Sensors 9:4119–4137

    Article  PubMed  CAS  Google Scholar 

  29. Martins VC, Germano J, Cardoso FA, Loureiro J, Cardoso S, Sousa L, Piedade M, Fonseca LP, Freitas PP (2009) Challenges and trends in the development of a magnetoresistive biochip portable platform. J Magn Magn Mater 322:1655–1663

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the availability of a customized electronic platform developed by INESC-ID group, by personally thanking to José Germano, Leonel Sousa, and Moisés Piedade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica C. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martins, S.S.A., Martins, V.C., Cardoso, F.A., Freitas, P.P., Fonseca, L.P. (2012). Waterborne Pathogen Detection Using a Magnetoresistive Immuno-Chip. In: Tiquia-Arashiro, S. (eds) Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-915-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-915-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-914-3

  • Online ISBN: 978-1-61779-915-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics