Skip to main content

Structure Analysis of Unfolded Peptides I: Vibrational Circular Dichroism Spectroscopy

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 895))

Abstract

Vibrational circular dichroism (VCD) spectroscopy is an invaluable spectroscopic techniques utilized to exploit the optical strength of vibrational transitions for structure analysis. In this chapter, we describe the protocol for measuring and self-consistently analyzing VCD and the corresponding FT-IR spectra of short peptides. This process involves the decomposition of the IR spectrum as well as simulations of the amide I band profiles in both spectra based on structural models of the peptides investigated. This type of spectral analysis should be complemented with similar investigations of Raman spectra, which are described in the subsequent chapter. The structural analysis of short, unfolded peptides described in this chapter can easily be extended for the analysis of longer unfolded peptides or even proteins. This is particularly important in view of the demonstrated biological relevance of intrinsically disordered peptides and proteins (IDPs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keiderling TA (1996) Vibrational circular dichroism: application to conformational analysis of biomolecules. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenumn, New York, p 555

    Google Scholar 

  2. Keiderling TA, Xu Q (2002) Unfolded proteins studied with IR and VCD spectra. Adv Protein Chem 62:111–161

    Article  PubMed  CAS  Google Scholar 

  3. Sutherland JC (2009) Measurement of circular dichroism and related spectroscopies with conventional and synchotron light sources: theory and instrumentation. In: Wallace BA, Janes RW (eds) Modern techniques for circular dichroism spectroscopy. IOS, Amsterdam, pp 19–73

    Google Scholar 

  4. Nafie LA (1997) Infrared and Raman vibrational optical activity. Annu Rev Phys Chem 48:357

    Article  PubMed  CAS  Google Scholar 

  5. Nafie LA, Dukor RK, Freedman TB (2002) Dichroism and optical activity in optical spectroscopy. In: Chalmers J, Griffiths P (eds) Handbook of vibrational spectroscopy. Wiley, New York, pp 731–744

    Google Scholar 

  6. Chen XG, Schweitzer-Stenner R, Asher SA, Mirkin NG, Krimm S (1995) Vibrational assignments of trans-N-methylacetamide and some of its deuterated isotopomers from band decomposition of IR, visible, and resonance Raman spectra. J Phys Chem 99:3074–3083

    Article  CAS  Google Scholar 

  7. Han W-G, Jakanen KJ, Elstner M, Suhai S (1998) Theoretical study of aqueous N-Acetyl-L-alanine N-methylamide: structures and Raman, VCD, and ROA spectra. J Phys Chem B 102:2587–2602

    Article  CAS  Google Scholar 

  8. Schweitzer-Stenner R, Gonzales W, Bourne JT, Feng JA, Marshall GA (2007) Conformational manifold of α-aminoisobutyric acid (Aib) containing alanine-based tripeptides in aqueous solution explored by vibrational spectroscopy, electronic circular dichroism spectroscopy, and molecular dynamics simulations. J Am Chem Soc 129:13095–13109

    Article  PubMed  CAS  Google Scholar 

  9. Bouŕ P, Keiderling TA (2005) Vibrational spectral simulation for peptides of mixed secondary structure: method comparisons with the Trpzip model hairpin. J Phys Chem B 123:23687–23697

    Google Scholar 

  10. Tanaka S, Scheraga HA (1976) Statistical mechanical treatment of protein conformation. II. A three-state model for specific-sequence copolymers of amino acids. Macromolecules 9:150–167

    Google Scholar 

  11. Schweitzer-Stenner R (2006) Advances in vibrational spectroscopy as a sensitive probe of peptide and protein structure. A critical review. Vib Spectrosc 42:98–117

    Article  CAS  Google Scholar 

  12. Schweitzer-Stenner R (2009) Distribution of conformations sampled by the central amino acid residue in Tripeptides inferred from amide I band profiles and NMR scalar coupling constants. J Phys Chem B 113:2922–2932

    Article  PubMed  CAS  Google Scholar 

  13. Hagarman A, Measey TJ, Mathieu D, Schwalbe H, Schweitzer-Stenner R (2010) Intrinsic propensities of amino acid residues in GxG peptides inferred from amide I band profiles and NMR scalar coupling constants. J Am Chem Soc 132:542

    Article  Google Scholar 

  14. Chicz RM, Regnier FE (1990) High-performance liquid chromatography: effective protein purification by various chromatographic modes. Methods Enzymol 182:392–421

    Article  PubMed  CAS  Google Scholar 

  15. Ingle JD, Crouch SR (1988) Infrared spectrometry. In: Spectrochemical analysis. Prentice Hall, Upper Saddle River, NJ, p 404–437

    Google Scholar 

  16. Skoog DA, Holler FJ, Nieman TA (1998) An introduction to infrared spectrometry. In: Principles of Instrumental Analysis, 5th ed. Harcourt Brace and Company, Philadelphia, USA, p 380–428

    Google Scholar 

  17. (2000) Model SR810 DSP lock-in amplifier, 1.6 ed. Stanford Research Systems, Sunnyvale, CA

    Google Scholar 

  18. (1999) Series SR640 Dual-channel filters, 2.6 ed. Stanford Research Systems, Inc, Sunnyvale, CA

    Google Scholar 

  19. Graf J, Nguyen PH, Stock G, Schwalbe H (2007) Structure and dynamics of the homologous series of alanine peptides: a joint molecular dynamics/nmr study. J Am Chem Soc 129:1179–1189

    Article  PubMed  CAS  Google Scholar 

  20. Jentzen W, Unger E, Karvounis G, Shelnutt JA, Dreybrodt W, Schweitzer-Stenner R (1995) Conformational properties of nickel(II) octaethylporphyrin in solution. 1. Resonance excitation profiles and temperature dependence of structure-sensitive Raman lines. J Phys Chem 100:14184–14191

    Article  Google Scholar 

  21. Woutersen S, Hamm P (2000) Structure determination of trialanine in water using polarized sensitive two-dimensional vibrational spectroscopy. J Phys Chem B 104:11316–11320

    Article  CAS  Google Scholar 

  22. Eker F, Cao X, Nafie L, Schweitzer-Stenner R (2002) Tripeptides adopt stable structures in water. A combined polarized visible Raman, FTIR and VCD spectroscopy study. J Am Chem Soc 124:14330–14341

    Article  PubMed  CAS  Google Scholar 

  23. Schweitzer-Stenner R (2002) Dihedral angles of tripeptides in solution determined by polarized Raman and FTIR spectroscopy. Biophys J 83:523–532

    Article  PubMed  CAS  Google Scholar 

  24. Torii H, Tasumi M (1998) Ab initio molecular orbital study of the amide i vibrational interactions between the peptide groups in di- and tripeptides and considerations on the conformation of the extended helix. J Raman Spectrosc 29:81–86

    Article  CAS  Google Scholar 

  25. Krimm S, Bandekar J (1986) Vibrational spectroscopy of peptides and proteins. Adv Protein Chem 38:181

    Article  PubMed  CAS  Google Scholar 

  26. Woutersen S, Hamm P (2001) Isotope-edited two-dimensional vibrational spectroscopy of trialanine in aqueous solution. J Chem Phys 114:2727–2737

    Article  CAS  Google Scholar 

  27. Gorbunov RD, Kosov DS, Stock G (2005) Ab initio-based exciton model of amide I vibrations in peptides: definition, conformational dependence and transferability. J Chem Phys 122:224904–224915

    Article  PubMed  Google Scholar 

  28. Ham S, Cha S, Choi J-H, Cho M (2003) Amide I modes of tripeptides: Hessian matrix reconstruction and isotope effects. J Chem Phys 119:1452–1461

    Article  Google Scholar 

  29. Ham S, Cho M (2003) Amide I modes in the N-methylacetamide dimer and glycine dipeptide analog: diagonal force constants. J Chem Phys 118:6915–6922

    Article  CAS  Google Scholar 

  30. Gorbunov RD, Nguyen PH, Kobus M, Stock G (2007) Quantum-classical description of the amide I vibrational spectrum of trialanine. J Chem Phys 126:054509

    Google Scholar 

  31. Measey T, Hagarman A, Eker F, Griebenow K, Schweitzer-Stenner R (2005) Side chain dependence of intensity and wavenumber position of amide I′ in IR and visible Raman spectra of XA and AX dipeptides. J Phys Chem B 109:8195–8205

    Article  PubMed  CAS  Google Scholar 

  32. Eker F, Cao X, Nafie L, Griebenow K, Schweitzer-Stenner R (2003) The structure of alanine based tripeptides in water and dimethyl sulfoxide probed by vibrational spectroscopy. J Phys Chem B 107:358–365

    Article  CAS  Google Scholar 

  33. Eker F, Griebenow K, Schweitzer-Stenner R (2004) A β1–28 fragment of the amyloid peptide predominantly adopts a polyproline II conformation in an acidic solution. Biochemistry 43:6893–6898

    Article  PubMed  CAS  Google Scholar 

  34. Schweitzer-Stenner R, Measey T, Hagarman A, Eker F, Griebenow K (2006) Salmon calcitonin an amyloid β: two peptides with amyloidogenic capacity adopt different conformational manifolds in their unfolded states. Biochemistry 45:2810–2819

    Article  PubMed  CAS  Google Scholar 

  35. Schweitzer-Stenner R, Measey T, Kakalis L, Jordan F, Pizzanelli S, Forte C, Griebenow K (2007) Conformations of alanine-based peptides in water probed by FTIR, Raman, vibrational circular dichroism, electronic circular dichroism, and NMR spectroscopy. Biochemistry 46:1587–1596

    Article  PubMed  CAS  Google Scholar 

  36. Schweitzer-Stenner R, Eker F, Perez A, Griebenow K, Cao X, Nafie LA (2003) The structure of tri-proline in water probed probed by polarized Raman, Fourier transform infrared, vibrational circular dichroism and electronic ultraviolet circular dichroism spectroscopy. Biopolymers 71:558–568

    Article  PubMed  CAS  Google Scholar 

  37. Holzwarth G, Chabay I (1972) Optical activity of vibrational transitions: a coupled oscillator model. J Chem Phys 57:1632–1638

    Article  CAS  Google Scholar 

  38. Huang Q, Schweitzer-Stenner R (2004) Conformational analysis of tetrapeptides by exploiting the excitonic coupling between amide I modes. J Raman Spectrosc 53:586–591

    Article  Google Scholar 

  39. Lee C, Cho MH (2004) Local amide I mode frequencies and coupling constants in multiple-stranded antiparallel beta-sheet polypeptides. J Phys Chem B 108:20397–20407

    Article  CAS  Google Scholar 

  40. Kubelka J, Keiderling TA (2001) Differentiation of β-sheet-forming structures: Ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein β-sheets. J Am Chem Soc 123:12048–12058

    Article  PubMed  CAS  Google Scholar 

  41. Kubelka J, Keiderling TA (2001) The anomalous infrared amide I intensity distribution in 13C isotopically labeled peptide β-sheets comes from extended, multiple –stranded structures. An ab initio study. J Am Chem Soc 123:6142–6150

    Article  PubMed  CAS  Google Scholar 

  42. Schweitzer-Stenner R, Measey TJ (2010) Simulation of IR, Raman and VCD amide I band profiles of self-assembled peptides. Spectroscopy 24:25–36

    Article  CAS  Google Scholar 

  43. Schweitzer-Stenner R (2004) Secondary structure analysis of polypeptides based on an excitonic coupling model to describe the band profile of amide I of IR, Raman and vibrational circular dichroism spectra. J Phys Chem B 108:16965–16975

    Article  CAS  Google Scholar 

  44. Verbaro D, Ghosh I, Nau WM, Schweitzer-Stenner R (2010) Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I′ band profiles. J Phys Chem B 114:17201–17208

    Article  PubMed  CAS  Google Scholar 

  45. Schweitzer-Stenner R, Measey TJ, Hagarman A, Dragomir I (2010) The structure of unfolded peptides and proteins explored by Raman and IR spectroscopies. In: Assessing Structures and Conformation of Intrinsically Disordered Proteins”, Editors: S. Longhi and V.N. Uversky. Wiley & Sons, 171–224:2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Schweitzer-Stenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schweitzer-Stenner, R., Soffer, J.B., Verbaro, D. (2012). Structure Analysis of Unfolded Peptides I: Vibrational Circular Dichroism Spectroscopy. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 895. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-927-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-927-3_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-926-6

  • Online ISBN: 978-1-61779-927-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics