Skip to main content

Protocol for Gene Expression Profiling Using DNA Microarrays in Neisseria gonorrhoeae

  • Protocol
  • First Online:
Diagnosis of Sexually Transmitted Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 903))

Abstract

Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson LJ, Ducey TF, Day MW, Zaitshik JB, Orvis J, Dyer DW (2010) Transcriptional and functional analysis of the Neisseria gonorrhoeae Fur regulon. J Bacteriol 192:77–85

    Article  PubMed  CAS  Google Scholar 

  2. Folster JP, Johnson PJ, Jackson L, Dhulipali V, Dyer DW, Shafer WM (2009) MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol 191:287–297

    Article  PubMed  CAS  Google Scholar 

  3. Metruccio MM, Fantappie L, Serruto D, Muzzi A, Roncarati D, Donati C, Scarlato V, Delany I (2009) The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J Bacteriol 191:1330–1342

    Article  PubMed  CAS  Google Scholar 

  4. Agarwal S, Sebastian S, Szmigielski B, Rice PA, Genco CA (2008) Expression of the gonococcal global regulatory protein Fur and genes encompassing the Fur and iron regulon during in vitro and in vivo infection in women. J Bacteriol 190:3129–3139

    Article  PubMed  CAS  Google Scholar 

  5. Heurlier K, Thomson MJ, Aziz N, Moir JW (2008) The nitric oxide (NO)-sensing repressor NsrR of Neisseria meningitidis has a compact regulon of genes involved in NO synthesis and detoxification. J Bacteriol 190:2488–2495

    Article  PubMed  CAS  Google Scholar 

  6. Whitehead RN, Overton TW, Snyder LA, McGowan SJ, Smith H, Cole JA, Saunders NJ (2007) The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon. BMC Genomics 8:35

    Article  PubMed  Google Scholar 

  7. Seib KL, Wu HJ, Srikhanta YN, Edwards JL, Falsetta ML, Hamilton AJ, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP (2007) Characterization of the OxyR regulon of Neisseria gonorrhoeae. Mol Microbiol 63:54–68

    Article  PubMed  CAS  Google Scholar 

  8. Stohl EA, Seifert HS (2006) Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. J Bacteriol 188:7645–7651

    Article  PubMed  CAS  Google Scholar 

  9. Shaik YB, Grogan S, Davey M, Sebastian S, Goswami S, Szmigielski B, Genco CA (2007) Expression of the iron-activated nspA and secY genes in Neisseria meningitidis group B by Fur-dependent and -independent mechanisms. J Bacteriol 189:663–669

    Article  PubMed  CAS  Google Scholar 

  10. Overton TW, Whitehead R, Li Y, Snyder LA, Saunders NJ, Smith H, Cole JA (2006) Coordinated regulation of the Neisseria gonorrhoeae-truncated denitrification pathway by the nitric oxide-sensitive repressor, NsrR, and nitrite-insensitive NarQ-NarP. J Biol Chem 281:33115–33126

    Article  PubMed  CAS  Google Scholar 

  11. Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, Rappuoli R, Grandi G, Genco CA (2003) Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci U S A 100:9542–9547

    Article  PubMed  CAS  Google Scholar 

  12. Grifantini R, Frigimelica E, Delany I, Bartolini E, Giovinazzi S, Balloni S, Agarwal S, Galli G, Genco C, Grandi G (2004) Characterization of a novel Neisseria meningitidis Fur and iron-regulated operon required for protection from oxidative stress: utility of DNA microarray in the assignment of the biological role of hypothetical genes. Mol Microbiol 54:962–979

    Article  PubMed  CAS  Google Scholar 

  13. Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW (2005) Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 187:4865–4874

    Article  PubMed  CAS  Google Scholar 

  14. Bartolini E, Frigimelica E, Giovinazzi S, Galli G, Shaik Y, Genco C, Welsch JA, Granoff DM, Grandi G, Grifantini R (2006) Role of FNR and FNR-regulated, sugar fermentation genes in Neisseria meningitidis infection. Mol Microbiol 60:963–972

    Article  PubMed  CAS  Google Scholar 

  15. Gunesekere IC, Kahler CM, Ryan CS, Snyder LA, Saunders NJ, Rood JI, Davies JK (2006) Ecf, an alternative sigma factor from Neisseria gonorrhoeae, controls expression of msrAB, which encodes methionine sulfoxide reductase. J Bacteriol 188:3463–3469

    Article  PubMed  CAS  Google Scholar 

  16. Wu HJ, Seib KL, Srikhanta YN, Kidd SP, Edwards JL, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP (2006) PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol Microbiol 60:401–416

    Article  PubMed  CAS  Google Scholar 

  17. Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AH, Maiden MC, Grimmond SM, Apicella MA, Jennings MP (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 5:e1000400

    Article  PubMed  Google Scholar 

  18. Dietrich M, Munke R, Gottschald M, Ziska E, Boettcher JP, Mollenkopf H, Friedrich A (2009) The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae. FEBS J 276:5507–5520

    Article  PubMed  CAS  Google Scholar 

  19. Peng J, Zhang X, Shao Z, Yang L, Jin Q (2008) Characterization of a new Neisseria meningitidis serogroup C clone from China. Scand J Infect Dis 40:63–66

    Article  PubMed  CAS  Google Scholar 

  20. Peng J, Zhang X, Yang E, Wang J, Yang J, Shao Z, Jin Q (2007) Characterization of serogroup C meningococci isolated from 14 provinces of China during 1966-2005 using comparative genomic hybridization. Sci China C Life Sci 50:1–6

    Article  PubMed  CAS  Google Scholar 

  21. Dunning Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, Frigimelica E, Draghi M, Giuliani MM, Rappuoli R, Stephens DS, Grandi G, Tettelin H (2006) Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152:3733–3749

    Article  PubMed  CAS  Google Scholar 

  22. Snyder LA, Saunders NJ (2006) The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as “virulence genes”. BMC Genomics 7:128

    Article  PubMed  Google Scholar 

  23. Snyder LA, Davies JK, Saunders NJ (2004) Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with Minimal Mobile Elements. BMC Genomics 5:23

    Article  PubMed  Google Scholar 

  24. Stabler RA, Marsden GL, Witney AA, Li Y, Bentley SD, Tang CM, Hinds J (2005) Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology 151:2907–2922

    Article  PubMed  CAS  Google Scholar 

  25. Snyder LA, Jarvis SA, Saunders NJ (2005) Complete and variant forms of the “gonococcal genetic island” in Neisseria meningitidis. Microbiology 151:4005–4013

    Article  PubMed  CAS  Google Scholar 

  26. Corless CE, Kaczmarski E, Borrow R, Guiver M (2008) Molecular characterization of Neisseria meningitidis isolates using a resequencing DNA microarray. J Mol Diagn 10:265–271

    Article  PubMed  CAS  Google Scholar 

  27. Swiderek H, Claus H, Frosch M, Vogel U (2005) Evaluation of custom-made DNA microarrays for multilocus sequence typing of Neisseria meningitidis. Int J Med Microbiol 295:39–45

    Article  PubMed  CAS  Google Scholar 

  28. Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, Berger J, Ratti G, Petracca R, Galli G, Agnusdei M, Giuliani MM, Santini L, Brunelli B, Tettelin H, Rappuoli R, Randazzo F, Grandi G (2002) Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20:914–921

    Article  PubMed  CAS  Google Scholar 

  29. Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, Berger J, Randazzo F, Grandi G (2002) Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: from basic research to vaccine development. Ann N Y Acad Sci 975:202–216

    Article  PubMed  CAS  Google Scholar 

  30. Booth SA, Drebot MA, Martin IE, Ng LK (2003) Design of oligonucleotide arrays to detect point mutations: molecular typing of antibiotic resistant strains of Neisseria gonorrhoeae and hantavirus infected deer mice. Mol Cell Probes 17:77–84

    Article  PubMed  CAS  Google Scholar 

  31. Shi G, Wen SY, Chen SH, Wang SQ (2005) Fabrication and optimization of the multiplex PCR-based oligonucleotide microarray for detection of Neisseria gonorrhoeae, Chlamydia trachomatis and Ureaplasma urealyticum. J Microbiol Methods 62:245–256

    Article  PubMed  CAS  Google Scholar 

  32. Andresen D, von Nickisch-Rosenegk M, Bier FF (2009) Helicase dependent OnChip-amplification and its use in multiplex pathogen detection. Clin Chim Acta 403:244–248

    Article  PubMed  CAS  Google Scholar 

  33. Wells DB, Tighe PJ, Wooldridge KG, Robinson K, Ala’ Aldeen DA (2001) Differential gene expression during meningeal-meningococcal interaction: evidence for self-defense and early release of cytokines and chemokines. Infect Immun 69:2718–2722

    Article  PubMed  CAS  Google Scholar 

  34. Binnicker MJ, Williams RD, Apicella MA (2003) Infection of human urethral epithelium with Neisseria gonorrhoeae elicits an upregulation of host anti-apoptotic factors and protects cells from staurosporine-induced apoptosis. Cell Microbiol 5:549–560

    Article  PubMed  CAS  Google Scholar 

  35. Bonnah RA, Muckenthaler MU, Carlson H, Minana B, Enns CA, Hentze MW, So M (2004) Expression of epithelial cell iron-related genes upon infection by Neisseria meningitidis. Cell Microbiol 6:473–484

    Article  PubMed  CAS  Google Scholar 

  36. Muenzner P, Rohde M, Kneitz S, Hauck CR (2005) CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. J Cell Biol 170:825–836

    Article  PubMed  CAS  Google Scholar 

  37. Ovstebo R, Olstad OK, Brusletto B, Moller AS, Aase A, Haug KB, Brandtzaeg P, Kierulf P (2008) Identification of genes particularly sensitive to lipopolysaccharide (LPS) in human monocytes induced by wild-type versus LPS-deficient Neisseria meningitidis strains. Infect Immun 76:2685–2695

    Article  PubMed  Google Scholar 

  38. Schubert-Unkmeir A, Schramm-Gluck A, Frosch M, Schoen C (2009) Transcriptome analyses in the interaction of Neisseria meningitidis with mammalian host cells. Methods Mol Biol 470:5–27

    Article  PubMed  CAS  Google Scholar 

  39. Schubert-Unkmeir A, Slanina H, Frosch M (2009) Mammalian cell transcriptome in response to meningitis-causing pathogens. Expert Rev Mol Diagn 9:833–842

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydgia A. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jackson, L.A., Dyer, D.W. (2012). Protocol for Gene Expression Profiling Using DNA Microarrays in Neisseria gonorrhoeae . In: MacKenzie, C., Henrich, B. (eds) Diagnosis of Sexually Transmitted Diseases. Methods in Molecular Biology, vol 903. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-937-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-937-2_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-936-5

  • Online ISBN: 978-1-61779-937-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics