Skip to main content

Functions of Single-Strand DNA-Binding Proteins in DNA Replication, Recombination, and Repair

  • Protocol
  • First Online:
Single-Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 922))

Abstract

Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes.

SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea.

As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance factors can help to stimulate and coordinate the activities of individual enzymes and is also important for dislodging SSB from ssDNA. These features support a model in which DNA metabolic processes have evolved to work on ssDNA/SSB nucleoprotein filaments rather than on naked ssDNA.

In this volume, methods are described to interrogate SSB-DNA and SSB-protein binding functions along with approaches that aim to understand the cellular functions of SSB. This introductory chapter offers a general overview of SSBs that focuses on their structures, DNA-binding mechanisms, and protein-binding partners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flynn RL, Zou L (2010) Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 45(4):266–275

    Article  PubMed  CAS  Google Scholar 

  2. Theobald DL, Mitton-Fry RM, Wuttke DS (2003) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133

    Article  PubMed  CAS  Google Scholar 

  3. Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12(3):861–867

    PubMed  CAS  Google Scholar 

  4. Wadsworth RI, White MF (2001) Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus. Nucleic Acids Res 29(4):914–920

    Article  PubMed  CAS  Google Scholar 

  5. Kelly TJ, Simancek P, Brush GS (1998) Identification and characterization of a single-stranded DNA-binding protein from the archaeon Methanococcus jannaschii. Proc Natl Acad Sci U S A 95(25):14634–14639

    Article  PubMed  CAS  Google Scholar 

  6. Raghunathan S et al (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7(8):648–652

    Article  PubMed  CAS  Google Scholar 

  7. Bernstein DA et al (2004) Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A 101(23):8575–8580

    Article  PubMed  CAS  Google Scholar 

  8. Bochkarev A et al (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385(6612):176–181

    Article  PubMed  CAS  Google Scholar 

  9. Bochkareva E et al (2001) Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J 20(3):612–618

    Article  PubMed  CAS  Google Scholar 

  10. Shereda RD et al (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43(5):289–318

    Article  PubMed  CAS  Google Scholar 

  11. Dabrowski S et al (2002) Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus—new arrangement of binding domains. Microbiology 148(Pt 10):3307–3315

    PubMed  CAS  Google Scholar 

  12. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570

    Article  PubMed  CAS  Google Scholar 

  13. Bujalowski W, Overman LB, Lohman TM (1988) Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J Biol Chem 263(10):4629–4640

    PubMed  CAS  Google Scholar 

  14. Casas-Finet JR et al (1987) Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single-stranded polynucleotides. FEBS Lett 220(2):347–352

    Article  PubMed  CAS  Google Scholar 

  15. Costes A et al (2010) The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet 6(12):e1001238

    Article  PubMed  CAS  Google Scholar 

  16. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  PubMed  CAS  Google Scholar 

  17. Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34(15):4126–4137

    Article  PubMed  CAS  Google Scholar 

  18. Richard DJ, Bolderson E, Khanna KK (2009) Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 44(2–3):98–116

    PubMed  CAS  Google Scholar 

  19. Bochkareva E et al (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21(7):1855–1863

    Article  PubMed  CAS  Google Scholar 

  20. Bochkareva E, Korolev S, Bochkarev A (2000) The role for zinc in replication protein A. J Biol Chem 275(35):27332–27338

    PubMed  CAS  Google Scholar 

  21. Park JS et al (1999) Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. J Biol Chem 274(41):29075–29080

    Article  PubMed  CAS  Google Scholar 

  22. Haseltine CA, Kowalczykowski SC (2002) A distinctive single-strand DNA-binding protein from the Archaeon Sulfolobus solfataricus. Mol Microbiol 43(6):1505–1515

    Article  PubMed  CAS  Google Scholar 

  23. Kerr ID et al (2003) Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein. EMBO J 22(11):2561–2570

    Article  PubMed  CAS  Google Scholar 

  24. Komori K, Ishino Y (2001) Replication protein A in Pyrococcus furiosus is involved in homologous DNA recombination. J Biol Chem 276(28):25654–25660

    Article  PubMed  CAS  Google Scholar 

  25. Shamoo Y et al (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376(6538):362–366

    Article  PubMed  CAS  Google Scholar 

  26. Hollis T et al (2001) Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proc Natl Acad Sci U S A 98(17):9557–9562

    Article  PubMed  CAS  Google Scholar 

  27. Kim YT, Richardson CC (1994) Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein–protein interactions. J Biol Chem 269(7):5270–5278

    PubMed  CAS  Google Scholar 

  28. Ferrari ME, Bujalowski W, Lohman TM (1994) Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J Mol Biol 236(1):106–123

    Article  PubMed  CAS  Google Scholar 

  29. Lohman TM, Bujalowski W (1994) Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes. Biochemistry 33(20):6167–6176

    Article  PubMed  CAS  Google Scholar 

  30. Ferrari ME, Fang J, Lohman TM (1997) A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single-stranded DNA binding. Biophys Chem 64(1–3):235–251

    Article  PubMed  CAS  Google Scholar 

  31. Merrill BM et al (1984) Photochemical cross-linking of the Escherichia coli single-stranded DNA-binding protein to oligodeoxynucleotides. Identification of phenylalanine 60 as the site of cross-linking. J Biol Chem 259(17):10850–10856

    PubMed  CAS  Google Scholar 

  32. Richard DJ et al (2008) Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453(7195):677–681

    Article  PubMed  CAS  Google Scholar 

  33. Wyka IM et al (2003) Replication protein A interactions with DNA: differential binding of the core domains and analysis of the DNA interaction surface. Biochemistry 42(44):12909–12918

    Article  PubMed  CAS  Google Scholar 

  34. Arunkumar AI et al (2003) Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem 278(42):41077–41082

    Article  PubMed  CAS  Google Scholar 

  35. Broderick S et al (2010) Eukaryotic single-stranded DNA binding proteins: central factors in genome stability. Subcell Biochem 50:143–163

    Article  PubMed  CAS  Google Scholar 

  36. Oakley GG, Patrick SM (2010) Replication protein A: directing traffic at the intersection of replication and repair. Front Biosci 15:883–900

    Article  PubMed  CAS  Google Scholar 

  37. Pestryakov PE et al (2004) Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNA-binding domains. Nucleic Acids Res 32(6):1894–1903

    Article  PubMed  CAS  Google Scholar 

  38. Williams KR et al (1983) Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 258(5):3346–3355

    PubMed  CAS  Google Scholar 

  39. Zhou R et al (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146(2):222–232

    Article  PubMed  CAS  Google Scholar 

  40. Chase JW et al (1984) Characterization of the Escherichia coli SSB-113 mutant single-stranded DNA-binding protein. Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies. J Biol Chem 259(2):805–814

    PubMed  CAS  Google Scholar 

  41. Wang TC, Smith KC (1982) Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J Bacteriol 151(1):186–192

    PubMed  CAS  Google Scholar 

  42. Meyer RR et al (1980) A temperature-sensitive single-stranded DNA-binding protein from Escherichia coli. J Biol Chem 255(7):2897–2901

    PubMed  CAS  Google Scholar 

  43. Yuzhakov A, Kelman Z, O'Donnell M (1999) Trading places on DNA—a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96(1):153–163

    Article  PubMed  CAS  Google Scholar 

  44. Kelman Z et al (1998) Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17(8):2436–2449

    Article  PubMed  CAS  Google Scholar 

  45. Greenberg J, Donch J (1974) Sensitivity to elevated temperatures in exrB strains of Escherichia coli. Mutat Res 25(3):403–405

    Article  PubMed  CAS  Google Scholar 

  46. Breier AM (2005) Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci 102(11):3942–3947

    Article  PubMed  CAS  Google Scholar 

  47. Gulbis JM et al (2004) Crystal structure of the chi:psi subassembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 271(2):439–449

    Article  PubMed  CAS  Google Scholar 

  48. Kelman Z, O’Donnell M (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem 64:171–200

    Article  PubMed  CAS  Google Scholar 

  49. Simonetta KR et al (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137(4):659–671

    Article  PubMed  CAS  Google Scholar 

  50. Glover BP, McHenry CS (2001) The DNA polymerase III holoenzyme: an asymmetric dimeric replicative complex with leading and lagging strand polymerases. Cell 105(7):925–934

    Article  PubMed  CAS  Google Scholar 

  51. Glover BP, McHenry CS (1998) The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem 273(36):23476–23484

    Article  PubMed  CAS  Google Scholar 

  52. Marceau AH et al (2011) Structure of the SSB–DNA polymerase III interface and its role in DNA replication. EMBO J. 30(20):4236–4247

    Google Scholar 

  53. Wu CA, Zechner EL, Marians KJ (1992) Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. J Biol Chem 267(6):4030–4044

    PubMed  CAS  Google Scholar 

  54. Rowen L, Kornberg A (1978) Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem 253(3):758–764

    PubMed  CAS  Google Scholar 

  55. Cadman CJ, McGlynn P (2004) PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32(21):6378–6387

    Article  PubMed  CAS  Google Scholar 

  56. Kozlov AG et al (2010) Binding specificity of Escherichia coli single-stranded DNA binding protein for the χ subunit of DNA pol III holoenzyme and PriA helicase. Biochemistry 49(17):3555–3566

    Article  PubMed  CAS  Google Scholar 

  57. Lecointe F et al (2007) Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J 26(19):4239–4251

    Article  PubMed  CAS  Google Scholar 

  58. Arai K, Low RL, Kornberg A (1981) Movement and site selection for priming by the primosome in phage phi X174 DNA replication. Proc Natl Acad Sci USA 78(2):707–711

    Article  PubMed  CAS  Google Scholar 

  59. Shereda RD, Bernstein DA, Keck JL (2007) A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem 282(26):19247–19258

    Article  PubMed  CAS  Google Scholar 

  60. Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci U S A 86(8):2627–2631

    Article  PubMed  CAS  Google Scholar 

  61. Courcelle J, Carswell-Crumpton C, Hanawalt PC (1997) recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A 94(8):3714–3719

    Article  PubMed  CAS  Google Scholar 

  62. Courcelle J, Crowley DJ, Hanawalt PC (1999) Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and recF protein function. J Bacteriol 181(3):916–922

    PubMed  CAS  Google Scholar 

  63. Han ES et al (2006) RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res 34(4):1084–1091

    Article  PubMed  CAS  Google Scholar 

  64. Hobbs MD, Sakai A, Cox MM (2007) SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem 282(15):11058–11067

    Article  PubMed  CAS  Google Scholar 

  65. Inoue J et al (2008) The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res 36(1):94–109

    Article  PubMed  CAS  Google Scholar 

  66. Ryzhikov M et al (2011) Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res 39(14):6305–6314

    Article  PubMed  CAS  Google Scholar 

  67. Luisi-DeLuca C, Kolodner R (1994) Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J Mol Biol 236(1):124–138

    Article  PubMed  CAS  Google Scholar 

  68. Luisi-DeLuca C (1995) Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J Bacteriol 177(3):566–572

    PubMed  CAS  Google Scholar 

  69. Page AN et al (2011) Structure and biochemical activities of Escherichia coli MgsA. J Biol Chem 286(14):12075–12085

    Article  PubMed  CAS  Google Scholar 

  70. McGlynn P, Mahdi AA, Lloyd RG (2000) Characterisation of the catalytically active form of RecG helicase. Nucleic Acids Res 28(12):2324–2332

    Article  PubMed  CAS  Google Scholar 

  71. McGlynn P, Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18(8):413–419

    Article  PubMed  CAS  Google Scholar 

  72. Slocum SL et al (2007) Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol 367(3):647–664

    Article  PubMed  CAS  Google Scholar 

  73. Lu D, Keck JL (2008) Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc Natl Acad Sci USA 105(27):9169–9174

    Article  PubMed  CAS  Google Scholar 

  74. Genschel J, Curth U, Urbanke C (2000) Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381(3):183–192

    PubMed  CAS  Google Scholar 

  75. Dianov G, Lindahl T (1994) Reconstitution of the DNA base excision-repair pathway. Curr Biol 4(12):1069–1076

    Article  PubMed  CAS  Google Scholar 

  76. Purnapatre K et al (1999) Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Nucleic Acids Res 27(17):3487–3492

    Article  PubMed  CAS  Google Scholar 

  77. Iwasaki H et al (1990) The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol 172(11):6268–6273

    PubMed  CAS  Google Scholar 

  78. Pages V, Janel-Bintz R, Fuchs RP (2005) Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells. J Mol Biol 352(3):501–509

    Article  PubMed  CAS  Google Scholar 

  79. Weiner JH, Bertsch LL, Kornberg A (1975) The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication. J Biol Chem 250(6):1972–1980

    PubMed  CAS  Google Scholar 

  80. Molineux IJ, Gefter ML (1974) Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc Natl Acad Sci U S A 71(10):3858–3862

    Article  PubMed  CAS  Google Scholar 

  81. Bonner CA et al (1992) Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem 267(16):11431–11438

    PubMed  CAS  Google Scholar 

  82. Dalrymple BP et al (2001) A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci USA 98(20):11627–11632

    Article  PubMed  CAS  Google Scholar 

  83. Arad G et al (2008) Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 283(13):8274–8282

    Article  PubMed  CAS  Google Scholar 

  84. Goodman MF (2000) Coping with replication “train wrecks” in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci 25(4):189–195

    Article  PubMed  CAS  Google Scholar 

  85. Shafritz KM, Sandigursky M, Franklin WA (1998) Exonuclease IX of Escherichia coli. Nucleic Acids Res 26(11):2593–2597

    Article  PubMed  CAS  Google Scholar 

  86. Hodskinson MR et al (2007) Molecular interactions of Escherichia coli ExoIX and identification of its associated 3'-5' exonuclease activity. Nucleic Acids Res 35(12):4094–4102

    Article  PubMed  CAS  Google Scholar 

  87. Glucksmann-Kuis MA et al (1996) E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell 84(1):147–154

    Article  PubMed  CAS  Google Scholar 

  88. Davydova EK, Rothman-Denes LB (2003) Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci U S A 100(16):9250–9255

    Article  PubMed  CAS  Google Scholar 

  89. Borowiec JA et al (1990) Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 60(2):181–184

    Article  PubMed  CAS  Google Scholar 

  90. Hurwitz J et al (1990) The in vitro replication of DNA containing the SV40 origin. J Biol Chem 265(30):18043–18046

    PubMed  CAS  Google Scholar 

  91. Mimura S et al (2000) Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5(6):439–452

    Article  PubMed  CAS  Google Scholar 

  92. Frick DN, Richardson CC (2001) DNA primases. Annu Rev Biochem 70:39–80

    Article  PubMed  CAS  Google Scholar 

  93. Maga G et al (2001) Replication protein A as a “fidelity clamp” for DNA polymerase alpha. J Biol Chem 276(21):18235–18242

    Article  PubMed  CAS  Google Scholar 

  94. Conaway RC, Lehman IR (1982) Synthesis by the DNA primase of Drosophila melanogaster of a primer with a unique chain length. Proc Natl Acad Sci U S A 79(15):4585–4588

    Article  PubMed  CAS  Google Scholar 

  95. Conaway RC, Lehman IR (1982) A DNA primase activity associated with DNA polymerase alpha from Drosophila melanogaster embryos. Proc Natl Acad Sci U S A 79(8):2523–2527

    Article  PubMed  CAS  Google Scholar 

  96. Maga G, Hubscher U (1996) DNA replication machinery: functional characterization of a complex containing DNA polymerase alpha, DNA polymerase delta, and replication factor C suggests an asymmetric DNA polymerase dimer. Biochemistry 35(18):5764–5777

    Article  PubMed  CAS  Google Scholar 

  97. Bae SH et al (2001) RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412(6845):456–461

    Article  PubMed  CAS  Google Scholar 

  98. Bae SH, Seo YS (2000) Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem 275(48):38022–38031

    Article  PubMed  CAS  Google Scholar 

  99. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349–404

    PubMed  CAS  Google Scholar 

  100. Michel B et al (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A 101(35):12783–12788

    Article  PubMed  CAS  Google Scholar 

  101. Stauffer ME, Chazin WJ (2004) Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA. J Biol Chem 279(24):25638–25645

    Article  PubMed  CAS  Google Scholar 

  102. Butland G et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537

    Article  PubMed  CAS  Google Scholar 

  103. Mer G et al (2000) Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103(3):449–456

    Article  PubMed  CAS  Google Scholar 

  104. Wong JM, Ionescu D, Ingles CJ (2003) Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene 22(1):28–33

    Article  PubMed  CAS  Google Scholar 

  105. Doherty KM et al (2005) Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem 280(33):29494–29505

    Article  PubMed  CAS  Google Scholar 

  106. Shen JC et al (2003) The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity. Mech Ageing Dev 124(8–9):921–930

    Article  PubMed  CAS  Google Scholar 

  107. Constantinou A et al (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1(1):80–84

    Article  PubMed  CAS  Google Scholar 

  108. Wu L (2008) Wrestling off RAD51: a novel role for RecQ helicases. Bioessays 30(4):291–295

    Article  PubMed  CAS  Google Scholar 

  109. Bugreev DV et al (2007) Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev 21(23):3085–3094

    Article  PubMed  CAS  Google Scholar 

  110. Wang LC et al (2008) Fanconi anemia proteins stabilize replication forks. DNA Repair (Amst) 7(12):1973–1981

    Article  CAS  Google Scholar 

  111. Pichierri P, Franchitto A, Rosselli F (2004) BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 23(15):3154–3163

    Article  PubMed  CAS  Google Scholar 

  112. Gupta R et al (2007) FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 110(7):2390–2398

    Article  PubMed  CAS  Google Scholar 

  113. Kunkel TA, Pavlov YI, Bebenek K (2003) Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair (Amst) 2(2):135–149

    Article  CAS  Google Scholar 

  114. Kannouche PL, Lehmann AR (2004) Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3(8):1011–1013

    Article  PubMed  CAS  Google Scholar 

  115. Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14(4):491–500

    Article  PubMed  CAS  Google Scholar 

  116. Davies AA et al (2008) Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol Cell 29(5):625–636

    Article  PubMed  CAS  Google Scholar 

  117. Crespan E et al (2007) Expanding the repertoire of DNA polymerase substrates: template-instructed incorporation of non-nucleoside triphosphate analogues by DNA polymerases beta and lambda. Nucleic Acids Res 35(1):45–57

    Article  PubMed  CAS  Google Scholar 

  118. Krasikova YS et al (2008) Interaction between DNA Polymerase lambda and RPA during translesion synthesis. Biochemistry (Mosc) 73(9):1042–1046

    Article  CAS  Google Scholar 

  119. Guzder SN et al (1996) Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J Biol Chem 271(15):8903–8910

    Article  PubMed  CAS  Google Scholar 

  120. Coverley D et al (1992) A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res 20(15):3873–3880

    Article  PubMed  CAS  Google Scholar 

  121. Coverley D et al (1991) Requirement for the replication protein SSB in human DNA excision repair. Nature 349(6309):538–541

    Article  PubMed  CAS  Google Scholar 

  122. Nagelhus TA et al (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272(10):6561–6566

    Article  PubMed  CAS  Google Scholar 

  123. He Z et al (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374(6522):566–569

    Article  PubMed  CAS  Google Scholar 

  124. Matsunaga T et al (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271(19):11047–11050

    Article  PubMed  CAS  Google Scholar 

  125. Kumagai A et al (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124(5): 943–955

    Article  PubMed  CAS  Google Scholar 

  126. Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24):13827–13832

    Article  PubMed  CAS  Google Scholar 

  127. Zou Y et al (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208(2):267–273

    Article  PubMed  CAS  Google Scholar 

  128. Richard DJ, Bell SD, White MF (2004) Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase. Nucleic Acids Res 32(3):1065–1074

    Article  PubMed  CAS  Google Scholar 

  129. Woodman IL, Brammer K, Bolt EL (2011) Physical interaction between archaeal DNA repair helicase Hel308 and replication protein A (RPA). DNA Repair (Amst) 10(3):306–313

    Article  CAS  Google Scholar 

  130. Mijakovic I et al (2006) Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34(5):1588–1596

    Article  PubMed  CAS  Google Scholar 

  131. Dutta A et al (1991) Phosphorylation of replication protein A: a role for cdc2 kinase in G1/S regulation. Cold Spring Harb Symp Quant Biol 56:315–324

    Article  PubMed  CAS  Google Scholar 

  132. Dutta A, Stillman B (1992) cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11(6):2189–2199

    PubMed  CAS  Google Scholar 

  133. Din S et al (1990) Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 4(6):968–977

    Article  PubMed  CAS  Google Scholar 

  134. Lindner C et al (2004) Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein. J Bacteriol 186(4):1097–1105

    Article  PubMed  CAS  Google Scholar 

  135. Sugiman-Marangos S, Junop MS (2010) The structure of DdrB from deinococcus: a new fold for single-stranded DNA binding proteins. Nucleic Acids Res 38(10):3432–3440

    Article  PubMed  CAS  Google Scholar 

  136. Norais CA et al (2009) DdrB protein, an alternative deinococcus radiodurans SSB induced by ionizing radiation. J Biol Chem 284(32):21402–21411

    Article  PubMed  CAS  Google Scholar 

  137. Oliveira MT, Kaguni LS (2010) Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein. PLoS One 5(10):e15379

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee H. Marceau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marceau, A.H. (2012). Functions of Single-Strand DNA-Binding Proteins in DNA Replication, Recombination, and Repair. In: Keck, J. (eds) Single-Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 922. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-032-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-032-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-031-1

  • Online ISBN: 978-1-62703-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics