Skip to main content

Protein Folding at Atomic Resolution: Analysis of Autonomously Folding Supersecondary Structure Motifs by Nuclear Magnetic Resonance

  • Protocol
  • First Online:
Protein Supersecondary Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 932))

Abstract

The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryngelson JD, Onuchic JN, Socci ND et al (1995) Funnels, pathways, and the energy landscape of protein-folding—a synthesis. Proteins: Struct Funct Genet 21:167–195

    Article  CAS  Google Scholar 

  2. Pande VJ (2008) Computer simulations of protein folding. In: Muñoz V (ed) Protein folding, misfolding and aggregation: classical themes and novel approaches, RSC, Cambridge, pp 161–187

    Google Scholar 

  3. Jackson SE (1998) How do small single-domain proteins fold? Fold Des 3:R81–R91

    Article  PubMed  CAS  Google Scholar 

  4. Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding “speed limit”. Curr Opin Struct Biol 14:76–88

    Article  PubMed  CAS  Google Scholar 

  5. Muñoz V (2007) Conformational dynamics and ensembles in protein folding. Annu Rev Biophys Biomol Struct 36:395–412

    Article  PubMed  Google Scholar 

  6. Naganathan AN, Doshi U, Fung A et al (2006) Dynamics, energetics, and structure in protein folding. Biochemistry 45:8466–8475

    Article  PubMed  CAS  Google Scholar 

  7. Yang WY, Gruebele M (2003) Folding at the speed limit. Nature 423:193–197

    Article  PubMed  CAS  Google Scholar 

  8. Muñoz V, Sanchez-Ruiz JM (2004) Exploring protein-folding ensembles: a variable-barrier model for the analysis of equilibrium unfolding experiments. Proc Natl Acad Sci USA 101:17646–17651

    Article  PubMed  Google Scholar 

  9. Naganathan AN, Sanchez-Ruiz JM, Muñoz V (2005) Direct measurement of barrier heights in protein folding. J Am Chem Soc 127:17970–17971

    Article  PubMed  CAS  Google Scholar 

  10. Naganathan AN, Perez-Jimenez R, Sanchez-Ruiz JM et al (2005) Robustness of downhill folding: guidelines for the analysis of equilibrium folding experiments on small proteins. Biochemistry 44:7435–7449

    Article  PubMed  CAS  Google Scholar 

  11. Muñoz V (2002) Thermodynamics and kinetics of downhill protein folding investigated with a simple statistical mechanical model. Int J Quant Chem 90:1522–1528

    Article  Google Scholar 

  12. Garcia-Mira MM, Sadqi M, Fischer N et al (2002) Experimental identification of downhill protein folding. Science 298:2191–2195

    Article  PubMed  CAS  Google Scholar 

  13. Sadqi M, Fushman D, Muñoz V (2006) Atom-by-atom analysis of global downhill protein folding. Nature 442:317–21

    Article  PubMed  CAS  Google Scholar 

  14. Fung A, Li P, Godoy-Ruiz R et al (2008) Expanding the realm of ultrafast protein folding: gpW, a midsize natural single-domain with alpha  +  beta topology that folds downhill. J Am Chem Soc 130:7489–7495

    Article  PubMed  CAS  Google Scholar 

  15. Marti-Renom MA, Stuart A, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  CAS  Google Scholar 

  16. De Sancho D, Munoz V (2011) Integrated prediction of protein folding and unfolding rates from only size and structural class. Phys Chem Chem Phys 13: 17030–17043

    Google Scholar 

  17. Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138

    Article  CAS  Google Scholar 

  18. Cavanagh J, Fairbrother WJ III, AGP, Rance M et al (1996) Chemical exchange effects in NMR spectroscopy, in protein NMR spectroscopy: principles and practice, Academic Press, San Diego, p 391–404

    Google Scholar 

  19. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  PubMed  CAS  Google Scholar 

  20. Garret DS, Powers R, Gronenborn AM et al (1991) A common sense approach to peak picking in two-, three-, and four-dimensional spectra using computer analysis of contour diagrams. J Magn Reson 95:214–220

    Google Scholar 

  21. Brandes U, Wagner D (2004) In: Juenger M, Mutzel P (ed) Visone—analysis and visualization of social networks, in Graph drawing software, Springer, New York, p 321–340

    Google Scholar 

  22. Schanda P, Brutscher B (2005) Very fast two-dimensional NMR Spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  PubMed  CAS  Google Scholar 

  23. Amman C, Meier P, Merbach AE (1982) A simple multinuclear NMR thermometer. J Magn Reson 46:319–321

    Google Scholar 

  24. Naganathan AN, Muñoz V (2008) Determining denaturation midpoints in multiprobe equilibrium protein folding experiments. Biochemistry 47:6752–6761

    Article  PubMed  CAS  Google Scholar 

  25. Sadqi M, Fushman D, Muñoz V (2007) Structural biology—analysis of protein-folding cooperativity—reply. Nature 445:E17–E18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marie Curie Excellence Award MEXT-CT-2006-042334, and the grants BFU2008-03237, BFU2008-03278 and CONSOLIDER CSD2009-00088 from the Spanish Ministry of Science and Innovation (MICINN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sborgi, L., Verma, A., Sadqi, M., de Alba, E., Muñoz, V. (2012). Protein Folding at Atomic Resolution: Analysis of Autonomously Folding Supersecondary Structure Motifs by Nuclear Magnetic Resonance. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 932. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-065-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-065-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-064-9

  • Online ISBN: 978-1-62703-065-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics