Skip to main content

Measurement of Ca2+-ATPase Activity (in PMCA and SERCA1)

  • Protocol
  • First Online:
Calcium Signaling Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 937))

Abstract

Ca2+-ATP pumps (those on the plasma membrane; PMCA and sarcoplasmic reticulum; SERCA1) have an important role to play in the regulation of intracellular calcium concentrations. In this chapter, three preparations, two membranes and a purified enzyme, best suited for studies of Ca2+-ATPase activity are described. The two selected membranes are the human red blood cell (RBC) ghosts, a representative of plasma membranes (PM), and the rabbit skeletal muscle SR, an intracellular membrane. In this protocol, Pi released during the ATPase reaction is subsequently measured colorimetrically as a complex of molybdovanadate. The method is simple (one-step), fast, sensitive, and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+  +  Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254:9955–9958

    PubMed  CAS  Google Scholar 

  2. Gietzen K, Tejcka M, Wolf HV (1980) Calmodulin affinity chromatography yields a functional purified erythrocyte (Ca2+  +  Mg2+)-dependent adenosine triphosphatase. Biochem J 189:81–88

    PubMed  CAS  Google Scholar 

  3. Kosk-Kosicka D, Scaillet S, Inesi G (1986) The partial reactions in the catalytic cycle of the calcium-dependent adenosine triphosphatase purified from erythrocyte membranes. J Biol Chem 261:3333–3338

    PubMed  CAS  Google Scholar 

  4. Missiaen L, Raeymaekers L, Wuytack F, Vrolix M, DeSmedt H, Casteels R (1989) Phospholipid-protein interactions of the plasma-membrane Ca2+-transporting ATPase. Biochem J 263:687–694

    PubMed  CAS  Google Scholar 

  5. Kosk-Kosicka D, Zylinska L (1997) Protein kinase and calmodulin effects on the plasma membrane Ca2+-ATPase from excitable and nonexcitable cells. Mol Cell Biochem 173:79–87

    Article  PubMed  CAS  Google Scholar 

  6. Kosk-Kosicka D, Bzdega T (1988) Activation of the erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. J Biol Chem 263:18,184–18,189

    CAS  Google Scholar 

  7. Kosk-Kosicka D, Bzdega T, Wawrzynow A (1989) Fluorescence energy transfer studies of purified erythrocyte Ca2+-ATPase. J Biol Chem 264:19,495–19,499

    CAS  Google Scholar 

  8. Sackett DL, Kosk-Kosicka D (1996) The active species of plasma membrane Ca2+-ATPase are a dimer and a monomer-calmodulin complex. J Biol Chem 271:9987–9991

    Article  PubMed  CAS  Google Scholar 

  9. Lecocq J, Inesi G (1966) Determination of inorganic phosphate in the presence of adenosine triphosphate by the molybdo-vanadate method. Anal Biochem 15:160–163

    Article  PubMed  CAS  Google Scholar 

  10. Lin T-I, Morales MF (1977) Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: The actomyosin ATPase system. Anal Biochem 77:10–17

    Article  PubMed  CAS  Google Scholar 

  11. Pharmacia LKB Biotechnology, Affinity Chromatography, Principles and Methods, Pharmacia LKB Biotechnology, 1993

    Google Scholar 

  12. Eletr S, Inesi G (1972) Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton NMR studies. Biochim Biophys Acta 282:174–179

    Article  PubMed  CAS  Google Scholar 

  13. Carvalho MGC, Souza DG, deMeis L (1976) On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane. J Biol Chem 251:3629–3636

    PubMed  CAS  Google Scholar 

  14. Kosk-Kosicka D, Kurzmack M, Inesi G (1983) Kinetic characterization of detergent-solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry 22:2559–2567

    Article  PubMed  CAS  Google Scholar 

  15. Schwartzenbach G, Senn H, Andereff G (1957) Helvetica Chimica Acta 40:1886–1900

    Article  Google Scholar 

  16. Fabiato A, Fabiato F (1979) J Physiol (Paris) 75:463–464

    CAS  Google Scholar 

  17. Kosk-Kosicka D, Bzdega T, Johnson JD (1990) Fluorescence studies on calmodulin binding to erythrocyte Ca2+-ATPase in different oligomerization states. Biochemistry 29:1875–1879

    Article  PubMed  CAS  Google Scholar 

  18. Kosk-Kosicka D (1990) Comparison of the red blood cell Ca2+-ATPase in ghost membranes and after purification. Mol Cell Biochem 99:75–81

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta Kosk-Kosicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kosk-Kosicka, D. (2013). Measurement of Ca2+-ATPase Activity (in PMCA and SERCA1). In: Lambert, D., Rainbow, R. (eds) Calcium Signaling Protocols. Methods in Molecular Biology, vol 937. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-086-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-086-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-085-4

  • Online ISBN: 978-1-62703-086-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics