Skip to main content

Animal Models for Type 1 Diabetes

  • Protocol
  • First Online:
TRP Channels in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1014 Accesses

Abstract

The incidence of autoimmune diabetes has been steadily increasing in the developed world. A complex interplay between genetic factors and dysregulated immune cells ultimately results in breakdown of self-tolerance against islet beta cell antigens and loss of beta cell mass, which leads to insulin deficiency and persistent hyperglycemia. Much progress in our understanding of immunological mechanisms that underlie autoimmune diabetes has been made in recent years. A significant portion of the experimental investigations have been performed in rodent models of autoimmune diabetes that are reviewed in this chapter. In addition, an understanding of the biochemical characteristics of class II MHC molecules that predispose to autoimmune diabetes and their relationship to selection of the autoimmune T-cell repertoire are discussed. Finally, data supporting insulin as a dominant autoantigen are reviewed along with various effector pathways and cell types that induce islet beta cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464:1293–1300

    Article  CAS  PubMed  Google Scholar 

  2. McDevitt H (2001) The role of MHC class II molecules in the pathogenesis and prevention of type I diabetes. Adv Exp Med Biol 490:59–66

    Article  CAS  PubMed  Google Scholar 

  3. Lam-Tse WK, Lernmark A, Drexhage HA (2002) Animal models of endocrine/organ-specific autoimmune diseases: do they really help us to understand human autoimmunity? Springer Semin Immunopathol 24:297–321

    Article  CAS  PubMed  Google Scholar 

  4. Rossini AA, Mordes JP, Greiner DL (1989) The pathogenesis of autoimmune diabetes mellitus. Curr Opin Immunol 2:598–603

    Article  CAS  PubMed  Google Scholar 

  5. Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 23:447–485

    Article  CAS  PubMed  Google Scholar 

  6. Like AA, Weringer EJ, Holdash A, McGill P, Atkinson D, Rossini AA (1985) Adoptive transfer of autoimmune diabetes mellitus in biobreeding/Worcester (BB/W) inbred and hybrid rats. J Immunol 134:1583–1587

    CAS  PubMed  Google Scholar 

  7. Whalen BJ, Greiner DL, Mordes JP, Rossini AA (1994) Adoptive transfer of autoimmune diabetes mellitus to athymic rats: synergy of CD4+ and CD8+ T cells and prevention by RT6+ T cells. J Autoimmun 7:819–831

    Article  CAS  PubMed  Google Scholar 

  8. Wicker LS, Miller BJ, Mullen Y (1986) Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes 35:855–860

    Article  CAS  PubMed  Google Scholar 

  9. Bendelac A, Carnaud C, Boitard C, Bach JF (1987) Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med 166:823–832

    Article  CAS  PubMed  Google Scholar 

  10. Boitard C, Bendelac A, Richard MF, Carnaud C, Bach JF (1988) Prevention of diabetes in nonobese diabetic mice by anti-I-A monoclonal antibodies: transfer of protection by splenic T cells. Proc Natl Acad Sci USA 85:9719–9723

    Article  CAS  PubMed  Google Scholar 

  11. Greiner DL, Handler ES, Nakano K, Mordes JP, Rossini AA (1986) Absence of the RT-6 T cell subset in diabetes-prone BB/W rats. J Immunol 136:148–151

    CAS  PubMed  Google Scholar 

  12. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA (2009) Plasticity of CD4(+) FoxP3(+) T cells. Curr Opin Immunol 21:281–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu E, Eisenbarth GS (2002) Type 1A diabetes mellitus-associated autoimmunity. Endocrinol Metab Clin North Am 31:391–410, vii-viii

    Article  PubMed  Google Scholar 

  14. Latek RR, Unanue ER (1999) Mechanisms and consequences of peptide selection by the I-Ak class II molecule. Immunol Rev 172:209–228

    Article  CAS  PubMed  Google Scholar 

  15. Allen PM, Babbitt BP, Unanue ER (1987) T-cell recognition of lysozyme: the biochemical basis of presentation. Immunol Rev 98:171–187

    Article  CAS  PubMed  Google Scholar 

  16. Todd JA, Bell JI, McDevitt HO (1987) HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329:599–604

    Article  CAS  PubMed  Google Scholar 

  17. Fremont DH, Monnaie D, Nelson CA, Hendrickson WA, Unanue ER (1998) Crystal structure of I-Ak in complex with a dominant epitope of lysozyme. Immunity 8:305–317

    Article  CAS  PubMed  Google Scholar 

  18. Corper AL, Stratmann T, Apostolopoulos V, Scott CA, Garcia KC, Kang AS, Wilson IA, Teyton L (2000) A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 288:505–511

    Article  CAS  PubMed  Google Scholar 

  19. Latek RR, Suri A, Petzold SJ, Nelson CA, Kanagawa O, Unanue ER, Fremont DH (2000) Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 12:699–710

    Article  CAS  PubMed  Google Scholar 

  20. Lee KH, Wucherpfennig KW, Wiley DC (2001) Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2:501–507

    Article  CAS  PubMed  Google Scholar 

  21. Stratmann T, Apostolopoulos V, Mallet-Designe V, Corper AL, Scott CA, Wilson IA, Kang AS, Teyton L (2000) The I-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder. J Immunol 165:3214–3225

    CAS  PubMed  Google Scholar 

  22. Carrasco-Marin E, Shimizu J, Kanagawa O, Unanue ER (1996) The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol 156:450–458

    CAS  PubMed  Google Scholar 

  23. Suri A, Vidavsky I, van der Drift K, Kanagawa O, Gross ML, Unanue ER (2002) In APCs, the autologous peptides selected by the diabetogenic I-Ag7 molecule are unique and determined by the amino acid changes in the P9 pocket. J Immunol 168:1235–1243

    CAS  PubMed  Google Scholar 

  24. Suri A, Walters JJ, Gross ML, Unanue ER (2005) Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest 115:2268–2276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Suri A, Walters JJ, Kanagawa O, Gross ML, Unanue ER (2003) Specificity of peptide selection by antigen-presenting cells homozygous or heterozygous for expression of class II MHC molecules: the lack of competition. Proc Natl Acad Sci USA 100:5330–5335

    Article  CAS  PubMed  Google Scholar 

  26. Muixi L, Gay M, Munoz-Torres PM, Guitart C, Cedano J, Abian J, Alvarez I, Jaraquemada D (2011) The peptide-binding motif of HLA-DR8 shares important structural features with other type 1 diabetes-associated alleles. Genes Immun 12:504–512

    Article  CAS  PubMed  Google Scholar 

  27. Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435:220–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Quartey-Papafio R, Lund T, Chandler P, Picard J, Ozegbe P, Day S, Hutchings PR, O’Reilly L, Kioussis D, Simpson E et al (1995) Aspartate at position 57 of nonobese diabetic I-Ag7 beta-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J Immunol 154:5567–5575

    CAS  PubMed  Google Scholar 

  29. Singer SM, Tisch R, Yang XD, Sytwu HK, Liblau R, McDevitt HO (1998) Prevention of diabetes in NOD mice by a mutated I-Ab transgene. Diabetes 47:1570–1577

    Article  CAS  PubMed  Google Scholar 

  30. Hattori M, Buse JB, Jackson RA, Glimcher L, Dorf ME, Minami M, Makino S, Moriwaki K, Kuzuya H, Imura H et al (1986) The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. Science 231:733–735

    Article  CAS  PubMed  Google Scholar 

  31. Mora C, Wong FS, Chang CH, Flavell RA (1999) Pancreatic infiltration but not diabetes occurs in the relative absence of MHC class II-restricted CD4 T cells: studies using NOD/CIITA-deficient mice. J Immunol 162:4576–4588

    CAS  PubMed  Google Scholar 

  32. Kanagawa O, Martin SM, Vaupel BA, Carrasco-Marin E, Unanue ER (1998) Autoreactivity of T cells from nonobese diabetic mice: an I-Ag7-dependent reaction. Proc Natl Acad Sci USA 95:1721–1724

    Article  CAS  PubMed  Google Scholar 

  33. Stratmann T, Martin-Orozco N, Mallet-Designe V, Poirot L, McGavern D, Losyev G, Dobbs CM, Oldstone MB, Yoshida K, Kikutani H, Mathis D, Benoist C, Haskins K, Teyton L (2003) Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J Clin Invest 112:902–914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Suri A, Walters JJ, Rohrs HW, Gross ML, Unanue ER (2008) First signature of islet beta-cell-derived naturally processed peptides selected by diabetogenic class II MHC molecules. J Immunol 180:3849–3856

    CAS  PubMed  Google Scholar 

  35. Suri A, Levisetti MG, Unanue ER (2008) Do the peptide-binding properties of diabetogenic class II molecules explain autoreactivity? Curr Opin Immunol 20:105–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lieberman SM, DiLorenzo TP (2003) A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens 62:359–377

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt D, Amrani A, Verdaguer J, Bou S, Santamaria P (1999) Autoantigen-independent deletion of diabetogenic CD4+ thymocytes by protective MHC class II molecules. J Immunol 162:4627–4636

    CAS  PubMed  Google Scholar 

  38. Serreze DV, Leiter EH (1988) Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies. J Immunol 140:3801–3807

    CAS  PubMed  Google Scholar 

  39. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. D’Alise AM, Ergun A, Hill JA, Mathis D, Benoist C (2011) A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice. Proc Natl Acad Sci USA 108:8737–8742

    Article  PubMed  Google Scholar 

  41. Bluestone JA, Tang Q, Sedwick CE (2008) T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol 28:677–684

    Article  CAS  PubMed  Google Scholar 

  42. Luhder F, Katz J, Benoist C, Mathis D (1998) Major histocompatibility complex class II molecules can protect from diabetes by positively selecting T cells with additional specificities. J Exp Med 187:379–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ferreira C, Singh Y, Furmanski AL, Wong FS, Garden OA, Dyson J (2009) Non-obese diabetic mice select a low-diversity repertoire of natural regulatory T cells. Proc Natl Acad Sci USA 106:8320–8325

    Article  CAS  PubMed  Google Scholar 

  44. Singer SM, Tisch R, Yang XD, McDevitt HO (1993) An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells. Proc Natl Acad Sci USA 90:9566–9570

    Article  CAS  PubMed  Google Scholar 

  45. Sumida T, Furukawa M, Sakamoto A, Namekawa T, Maeda T, Zijlstra M, Iwamoto I, Koike T, Yoshida S, Tomioka H et al (1994) Prevention of insulitis and diabetes in beta 2-microglobulin-deficient non-obese diabetic mice. Int Immunol 6:1445–1449

    Article  CAS  PubMed  Google Scholar 

  46. Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC (1994) Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 43:505–509

    Article  CAS  PubMed  Google Scholar 

  47. Katz J, Benoist C, Mathis D (1993) Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. Eur J Immunol 23:3358–3360

    Article  CAS  PubMed  Google Scholar 

  48. Wicker LS, Leiter EH, Todd JA, Renjilian RJ, Peterson E, Fischer PA, Podolin PL, Zijlstra M, Jaenisch R, Peterson LB (1994) Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 43:500–504

    Article  CAS  PubMed  Google Scholar 

  49. Bluestone JA, Tang Q (2005) How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 17:638–642

    Article  CAS  PubMed  Google Scholar 

  50. Peterson JD, Pike B, McDuffie M, Haskins K (1994) Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice. J Immunol 153:2800–2806

    CAS  PubMed  Google Scholar 

  51. Haskins K, McDuffie M (1990) Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. Science 249:1433–1436

    Article  CAS  PubMed  Google Scholar 

  52. Peterson JD, Haskins K (1996) Transfer of diabetes in the NOD-scid mouse by CD4 T-cell clones. Differential requirement for CD8 T-cells. Diabetes 45:328–336

    Article  CAS  PubMed  Google Scholar 

  53. Haskins K, Wegmann D (1996) Diabetogenic T-cell clones. Diabetes 45:1299–1305

    Article  CAS  PubMed  Google Scholar 

  54. Katz JD, Wang B, Haskins K, Benoist C, Mathis D (1993) Following a diabetogenic T cell from genesis through pathogenesis. Cell 74:1089–1100

    Article  CAS  PubMed  Google Scholar 

  55. Verdaguer J, Schmidt D, Amrani A, Anderson B, Averill N, Santamaria P (1997) Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J Exp Med 186:1663–1676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Pakala SV, Chivetta M, Kelly CB, Katz JD (1999) In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. J Exp Med 189:1053–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Jun HS, Santamaria P, Lim HW, Zhang ML, Yoon JW (1999) Absolute requirement of macrophages for the development and activation of beta-cell cytotoxic CD8+ T-cells in T-cell receptor transgenic NOD mice. Diabetes 48:34–42

    Article  CAS  PubMed  Google Scholar 

  58. Lesage S, Hartley SB, Akkaraju S, Wilson J, Townsend M, Goodnow CC (2002) Failure to censor forbidden clones of CD4 T cells in autoimmune diabetes. J Exp Med 196:1175–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Kurts C, Carbone FR, Barnden M, Blanas E, Allison J, Heath WR, Miller JF (1997) CD4+ T cell help impairs CD8+ T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity. J Exp Med 186:2057–2062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Martin-Orozco N, Wang YH, Yagita H, Dong C (2006) Cutting Edge: Programmed death (PD) ligand-1/PD-1 interaction is required for CD8+ T cell tolerance to tissue antigens. J Immunol 177:8291–8295

    CAS  PubMed  Google Scholar 

  61. Camacho SA, Heath WR, Carbone FR, Sarvetnick N, LeBon A, Karlsson L, Peterson PA, Webb SR (2001) A key role for ICAM-1 in generating effector cells mediating inflammatory responses. Nat Immunol 2:523–529

    Article  CAS  PubMed  Google Scholar 

  62. Byersdorfer CA, Schweitzer GG, Unanue ER (2005) Diabetes is predicted by the beta cell level of autoantigen. J Immunol 175:4347–4354

    CAS  PubMed  Google Scholar 

  63. DiPaolo RJ, Unanue ER (2001) The level of peptide-MHC complex determines the susceptibility to autoimmune diabetes: studies in HEL transgenic mice. Eur J Immunol 31:3453–3459

    Article  CAS  PubMed  Google Scholar 

  64. Ohashi PS, Oehen S, Aichele P, Pircher H, Odermatt B, Herrera P, Higuchi Y, Buerki K, Hengartner H, Zinkernagel RM (1993) Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and tumor necrosis factor-alpha. J Immunol 150:5185–5194

    CAS  PubMed  Google Scholar 

  65. Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317

    Article  CAS  PubMed  Google Scholar 

  66. Horwitz MS, Ilic A, Fine C, Balasa B, Sarvetnick N (2004) Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 110:134–144

    Article  CAS  PubMed  Google Scholar 

  67. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4:781–785

    Article  CAS  PubMed  Google Scholar 

  68. Bach JF (2005) Infections and autoimmune diseases. J Autoimmun 25(Suppl):74–80

    Article  CAS  PubMed  Google Scholar 

  69. Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD, Fleming SA, Leiter EH, Shultz LD (1996) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J Exp Med 184:2049–2053

    Article  CAS  PubMed  Google Scholar 

  70. Hu CY, Rodriguez-Pinto D, Du W, Ahuja A, Henegariu O, Wong FS, Shlomchik MJ, Wen L (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117:3857–3867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Fiorina P, Vergani A, Dada S, Jurewicz M, Wong M, Law K, Wu E, Tian Z, Abdi R, Guleria I, Rodig S, Dunussi-Joannopoulos K, Bluestone J, Sayegh MH (2008) Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57:3013–3024

    Article  CAS  PubMed  Google Scholar 

  72. Zekavat G, Rostami SY, Badkerhanian A, Parsons RF, Koeberlein B, Yu M, Ward CD, Migone TS, Yu L, Eisenbarth GS, Cancro MP, Naji A, Noorchashm H (2008) In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J Immunol 181:8133–8144

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Melanitou E, Devendra D, Liu E, Miao D, Eisenbarth GS (2004) Early and quantal (by litter) expression of insulin autoantibodies in the nonobese diabetic mice predict early diabetes onset. J Immunol 173:6603–6610

    CAS  PubMed  Google Scholar 

  74. Serreze DV, Fleming SA, Chapman HD, Richard SD, Leiter EH, Tisch RM (1998) B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 161:3912–3918

    CAS  PubMed  Google Scholar 

  75. Falcone M, Lee J, Patstone G, Yeung B, Sarvetnick N (1998) B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J Immunol 161:1163–1168

    CAS  PubMed  Google Scholar 

  76. Noorchashm H, Lieu YK, Noorchashm N, Rostami SY, Greeley SA, Schlachterman A, Song HK, Noto LE, Jevnikar AM, Barker CF, Naji A (1999) I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol 163:743–750

    CAS  PubMed  Google Scholar 

  77. Babad J, Geliebter A, DiLorenzo TP (2010) T-cell autoantigens in the non-obese diabetic mouse model of autoimmune diabetes. Immunology 131:459–465

    Article  CAS  PubMed  Google Scholar 

  78. Moser A, Hsu HT, van Endert P (2010) Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000 Biol Rep 2:75

    PubMed Central  PubMed  Google Scholar 

  79. Wegmann DR, Norbury-Glaser M, Daniel D (1994) Insulin-specific T cells are a predominant component of islet infiltrates in pre-diabetic NOD mice. Eur J Immunol 24:1853–1857

    Article  CAS  PubMed  Google Scholar 

  80. Daniel D, Gill RG, Schloot N, Wegmann D (1995) Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur J Immunol 25:1056–1062

    Article  CAS  PubMed  Google Scholar 

  81. French MB, Allison J, Cram DS, Thomas HE, Dempsey-Collier M, Silva A, Georgiou HM, Kay TW, Harrison LC, Lew AM (1997) Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46:34–39

    Article  CAS  PubMed  Google Scholar 

  82. Jaeckel E, Lipes MA, von Boehmer H (2004) Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat Immunol 5:1028–1035

    Article  CAS  PubMed  Google Scholar 

  83. Jasinski JM, Yu L, Nakayama M, Li MM, Lipes MA, Eisenbarth GS, Liu E (2006) Transgenic insulin (B:9-23) T-cell receptor mice develop autoimmune diabetes dependent upon RAG genotype, H-2g7 homozygosity, and insulin 2 gene knockout. Diabetes 55:1978–1984

    Article  CAS  PubMed  Google Scholar 

  84. Levisetti MG, Suri A, Petzold SJ, Unanue ER (2007) The insulin-specific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J Immunol 178:6051–6057

    CAS  PubMed  Google Scholar 

  85. Mohan JF, Levisetti MG, Calderon B, Herzog JW, Petzold SJ, Unanue ER (2010) Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat Immunol 11:350–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Levisetti MG, Lewis DM, Suri A, Unanue ER (2008) Weak proinsulin peptide-major histocompatibility complexes are targeted in autoimmune diabetes in mice. Diabetes 57:1852–1860

    Article  CAS  PubMed  Google Scholar 

  87. Mohan JF, Petzold SJ, Unanue ER (2011) Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J Exp Med 208:2375–2383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Jolicoeur C, Hanahan D, Smith KM (1994) T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc Natl Acad Sci USA 91:6707–6711

    Article  CAS  PubMed  Google Scholar 

  89. Chentoufi AA, Palumbo M, Polychronakos C (2004) Proinsulin expression by Hassall’s corpuscles in the mouse thymus. Diabetes 53:354–359

    Article  CAS  PubMed  Google Scholar 

  90. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  CAS  PubMed  Google Scholar 

  91. Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415–417

    Article  CAS  PubMed  Google Scholar 

  92. Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA Jr, Matis LA (1997) The role of Fas in autoimmune diabetes. Cell 89:17–24

    Article  CAS  PubMed  Google Scholar 

  93. Savinov AY, Tcherepanov A, Green EA, Flavell RA, Chervonsky AV (2003) Contribution of Fas to diabetes development. Proc Natl Acad Sci USA 100:628–632

    Article  CAS  PubMed  Google Scholar 

  94. Kagi D, Odermatt B, Ohashi PS, Zinkernagel RM, Hengartner H (1996) Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 183:2143–2152

    Article  CAS  PubMed  Google Scholar 

  95. Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Kagi D, Ho A, Odermatt B, Zakarian A, Ohashi PS, Mak TW (1999) TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. J Immunol 162:4598–4605

    CAS  PubMed  Google Scholar 

  97. Calderon B, Suri A, Unanue ER (2006) In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: studies from an acute model. Am J Pathol 169:2137–2147

    Article  CAS  PubMed  Google Scholar 

  98. Jun HS, Yoon CS, Zbytnuik L, van Rooijen N, Yoon JW (1999) The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 189:347–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Rabinovitch A (1998) An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes Metab Rev 14:129–151

    Article  CAS  PubMed  Google Scholar 

  100. Shoda LK, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HT (2005) A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23:115–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Suri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suri, A., Levisetti, M. (2012). Animal Models for Type 1 Diabetes. In: Szallasi, A., Bíró, T. (eds) TRP Channels in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-095-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-095-3_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-094-6

  • Online ISBN: 978-1-62703-095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics