Skip to main content

Psychosocial Stress and Diet History Promote Emotional Feeding in Female Rhesus Monkeys

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Part of the book series: Neuromethods ((NM,volume 74))

Abstract

One proposed contributor to the recent surge in obesity prevalence is the increased availability of highly palatable foods coupled with the drive to consume these foods under stressful conditions. Studies of humans suggest that stress exposure promotes increased caloric intake and a preference for energy-dense foods, and this may be particularly true for women, as they more often show higher rates of obesity and report a higher incidence of emotional feeding relative to men. Socially housed female rhesus macaques provide a unique, ethologically relevant model for studying the effects of psychosocial stress on appetite within varying dietary environments. Macaque groups, regardless of size, are organized by a matrilineal dominance hierarchy that functions to maintain group stability. Lower ranking animals receive more aggression from higher ranking group mates and terminate these interactions by emitting submissive behavior. Subordinates have less control over their environment, and continual harassment from dominant animals results in dysregulation of the limbic–hypothalamic–pituitary–adrenal (LHPA) axis. Metabolic and anthropometric phenotypes differ between dominant and subordinate monkeys when maintained on a standard low-fat, high-fiber laboratory diet, as dominant females are more often heavier with greater fat and bone mass. Recent studies, using validated automated feeders, suggest that under conditions of a low-caloric density diet (LCD), subordinate monkeys consume similar calories but are more active during the daytime relative to dominant monkeys. However, once a highly palatable, high-caloric density diet that is high in fat and sugar (HFSD) is added to the LCD environment, subordinate females become significantly hyperphagic and exhibit significant increases in fat mass within a 2-week period. These studies also suggest a significant effect of diet history whereby subordinate animals previously exposed to the HFSD continue to be hyperphagic when returned to a LCD-only condition. Future studies are warranted to explore the long-term effects of psychosocial stress on appetite within a rich dietary environment analogous to that of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2010) Vital signs: state-specific obesity prevalence among adults United States, 2009. MMWR Morb Mortal Wkly Rep 59:951–955

    Google Scholar 

  2. Flegal KM (2005) Epidemiologic aspects of overweight and obesity in the United States. Physiol Behav 86:599–602

    PubMed  CAS  Google Scholar 

  3. Epel E et al (2001) Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 26:37–49

    PubMed  CAS  Google Scholar 

  4. Gibson EL (2006) Emotional influences on food choice: sensory, physiological, and psychological pathways. Physiol Behav 83:53–61

    Google Scholar 

  5. Oliver G, Wardle J, Gibson EL (2000) Stress and food choice: a laboratory study. Psychosom Med 62:853–865

    PubMed  CAS  Google Scholar 

  6. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458

    PubMed  CAS  Google Scholar 

  7. Kassirer JP, Angell M (1998) Losing weight–an ill-fated New Year’s resolution. N Engl J Med 338:52–54

    PubMed  CAS  Google Scholar 

  8. Hays NP, Roberts SB (2008) Aspects of eating behaviors “disinhibition” and “restraint” are related to weight gain and BMI in women. Obesity (Silver Spring) 16:52–58

    Google Scholar 

  9. Simon GE, Arterburn DE (2009) Does comorbid psychiatric disorder argue for or against surgical treatment of obesity? Gen Hosp Psychiatry 31:401–402

    PubMed  Google Scholar 

  10. Werrij MQ et al (2006) Overweight and obesity: the significance of a depressed mood. Patient Educ Couns 62:126–131

    PubMed  Google Scholar 

  11. McEwen BS (2002) Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging 23:921–939

    PubMed  CAS  Google Scholar 

  12. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    PubMed  CAS  Google Scholar 

  13. Juster RP, McEwen BS, Lupien SJ (2010) Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev 35:2–16

    PubMed  Google Scholar 

  14. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    PubMed  CAS  Google Scholar 

  15. Hill JO (2006) Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev 27:750–761

    PubMed  Google Scholar 

  16. Withrow D, Alter DA (2010) The economic burden of obesity worldwide: a systematic review of the direct costs of obesity. Obes Rev 12:131–141

    Google Scholar 

  17. Choi DC et al (2008) The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic-pituitary-adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology 33:659–669

    PubMed  CAS  Google Scholar 

  18. Herman JP et al (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180

    PubMed  CAS  Google Scholar 

  19. Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann NY Acad Sci 1148:64–73

    PubMed  Google Scholar 

  20. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    PubMed  CAS  Google Scholar 

  21. Bjorntorp P (2001) Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2:73–86

    PubMed  CAS  Google Scholar 

  22. Dallman MF, Pecoraro NC, la Fleur SE (2005) Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav Immun 19:275–280

    PubMed  Google Scholar 

  23. Rosmond R (2004) Obesity and depression: same disease, different names? Med Hypotheses 62:976–979

    PubMed  Google Scholar 

  24. Scott KM et al (2008) Obesity and mental disorders in the adult general population. J Psychosom Res 64:97–105

    PubMed  Google Scholar 

  25. Armario A (2006) The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors? CNS Neurol Disord Drug Targets 5:485–501

    PubMed  Google Scholar 

  26. Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039

    PubMed  CAS  Google Scholar 

  27. Bhatnagar S et al (1998) The effects of prior chronic stress on cardiovascular responses to acute restraint and formalin injection. Brain Res 797:313–320

    PubMed  CAS  Google Scholar 

  28. Bhatnagar S, Vining C (2003) Facilitation of hypothalamic-pituitary-adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Horm Behav 43:158–165

    PubMed  CAS  Google Scholar 

  29. Bhatnagar S et al (2006) Changes in hypothalamic-pituitary-adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J Neuroendocrinol 18:13–24

    PubMed  CAS  Google Scholar 

  30. Jaferi A, Bhatnagar S (2006) Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic-pituitary-adrenal activity in animals that habituate to repeated stress. Endocrinology 147:4917–4930

    PubMed  CAS  Google Scholar 

  31. Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. NeurosciBiobehav Rev 29:525–546

    Google Scholar 

  32. Huhman KL (2006) Social conflict models: can they inform us about human psychopathology? Horm Behav 50:640–646

    PubMed  Google Scholar 

  33. Tamashiro KL, Nguyen MM, Sakai RR (2005) Social stress: from rodents to primates. Front Neuroendocrinol 26:27–40

    PubMed  Google Scholar 

  34. Zellner DA et al (2006) Food selection changes under stress. Physiol Behav 87:789–793

    PubMed  CAS  Google Scholar 

  35. Zellner DA, Saito S, Gonzalez J (2007) The effect of stress on men’s food selection. Appetite 49:696–699

    PubMed  Google Scholar 

  36. Barry D, Pietrzak RH, Petry NM (2008) Gender differences in associations between body mass index and DSM-IV mood and anxiety disorders: results from the national epidemiologic survey on alcohol and related conditions. Ann Epidemiol 18:458–466

    PubMed  Google Scholar 

  37. Jones LE, Carney CP (2006) Increased risk for metabolic syndrome in persons seeking care for mental disorders. Ann Clin Psychiatry 18:149–155

    PubMed  Google Scholar 

  38. Weissman MM, Olfson M (1995) Depression in women: implications for health care research. Science 269:799–801

    PubMed  CAS  Google Scholar 

  39. Wurtman JJ (1993) Depression and weight gain: the serotonin connection. J Affect Disord 29:183–192

    PubMed  CAS  Google Scholar 

  40. Wurtman RJ, Wurtman JJ (1995) Brain serotonin, carbohydrate-craving, obesity and depression. Obes Res 3(Suppl 4):477S–480S

    PubMed  Google Scholar 

  41. Bernstein IS, Gordon TP (1974) The function of aggression in primate societies. Am Sci 62:304–311

    PubMed  CAS  Google Scholar 

  42. Bernstein IS (1976) Dominance, aggression and reproduction in primate societies. J Theor Biol 60:459–472

    PubMed  CAS  Google Scholar 

  43. Bernstein IS, Gordon TP, Rose RM (1974) Aggression and social controls in rhesus monkey (Macaca mulatta) groups revealed in group formation studies. Folia Primatol (Basel) 21:81–107

    CAS  Google Scholar 

  44. Shively C, Kaplan J (1984) Effects of social factors on adrenal weight and related physiology of Macaca fascicularis. Physiol Behav 33:777–782

    PubMed  CAS  Google Scholar 

  45. Arce M et al (2010) Diet choice, cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiol Behav 101:446–455

    PubMed  CAS  Google Scholar 

  46. Collura LA, Hoffman JB, Wilson ME (2009) Administration of human leptin differentially affects parameters of cortisol secretion in socially housed female rhesus monkeys. Endocrine 36:530–537

    PubMed  CAS  Google Scholar 

  47. Jarrell H et al (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93:807–819

    PubMed  CAS  Google Scholar 

  48. Kaplan JR et al (2010) Impairment of ovarian function and associated health-related abnormalities are attributable to low social status in premenopausal monkeys and not mitigated by a high-isoflavone soy diet. Hum Reprod 25:3083–3094

    PubMed  CAS  Google Scholar 

  49. Riddick NV et al (2009) Behavioral and neurobiological characteristics influencing social hierarchy formation in female cynomolgus monkeys. Neuroscience 158:1257–1265

    PubMed  CAS  Google Scholar 

  50. Shively CA (1998) Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biol Psychiatry 44:882–891

    PubMed  CAS  Google Scholar 

  51. Shively CA, Laber-Laird K, Anton RF (1997) Behavior and physiology of social stress and depression in female cynomolgus monkeys. Biol Psychiatry 41:871–882

    PubMed  CAS  Google Scholar 

  52. Stavisky RC et al (2001) Dominance, cortisol, and behavior in small groups of female cynomolgus monkeys (Macaca fascicularis). Horm Behav 39:232–238

    PubMed  CAS  Google Scholar 

  53. Michopoulos V et al (2012) Social subordination produces distinct stress-related phenotypes in female rhesus monkeys. Psychoneuroendocrinology 37:1071–1085

    PubMed  CAS  Google Scholar 

  54. Bernstein IS (1970) Primate status hierarchies. In: Rosenblum LA (ed) Primate behavior: developments in field and laboratory research. Academic, New York, pp 71–109

    Google Scholar 

  55. Kaplan JR et al (1984) Psychosocial influences on female ‘protection’ among cynomolgus macaques. Atherosclerosis 53:283–295

    PubMed  CAS  Google Scholar 

  56. Michopoulos V, Toufexis D, Wilson ME (2011) Social stress promotes emotional feeding and interacts with diet to shape appetite in females. Psychoneuroendocrinology 2012 Feb 27 Epub

    Google Scholar 

  57. Adams MR, Kaplan JR, Koritnik DR (1985) Psychosocial influences on ovarian endocrine and ovulatory function in Macaca fascicularis. Physiol Behav 35:935–940

    PubMed  CAS  Google Scholar 

  58. Cohen S (1999) Social status and susceptibility to respiratory infections. Ann NY Acad Sci 896:246–253

    PubMed  CAS  Google Scholar 

  59. Gust DA et al (1991) Formation of a new social group of unfamiliar female rhesus monkeys affects the immune and pituitary adrenocortical systems. Brain Behav Immun 5:296–307

    PubMed  CAS  Google Scholar 

  60. Kaplan JR et al (1996) Psychosocial factors, sex differences, and atherosclerosis: lessons from animal models. Psychosom Med 58:598–611

    PubMed  CAS  Google Scholar 

  61. Morgan D et al (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174

    PubMed  CAS  Google Scholar 

  62. Paiardini M (2009) T-cell phenotypic and functional changes associated with social subordination and gene polymorphisms in the serotonin reuptake transporter in female ­rhesus monkeys. Brain Behav Immun 23:286–293

    PubMed  CAS  Google Scholar 

  63. Sapolsky RM (2005) The influence of social hierarchy on primate health. Science 308:648–652

    PubMed  CAS  Google Scholar 

  64. Wilson ME et al (2008) Quantifying food intake in socially housed monkeys: social ­status effects on caloric consumption. Physiol Behav 94:586–594

    PubMed  CAS  Google Scholar 

  65. Marti O, Marti J, Armario A (1994) Effects of chronic stress on food intake in rats: influence of s stressor intensity and duration of daily exposure. Physiol Behav 55:747–753

    PubMed  CAS  Google Scholar 

  66. Smagin GN et al (1999) Prevention of stress-induced weight loss by third ventricle CRF receptor antagonist. Am J Physiol 276:R1461–1468

    PubMed  CAS  Google Scholar 

  67. Gamaro GD et al (2003) Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 42:107–114

    PubMed  CAS  Google Scholar 

  68. Jochman KA et al (2005) Corticotropin-releasing factor-1 receptors in the basolateral amygdala mediate stress-induced anorexia. Behav Neurosci 119:1448–1458

    PubMed  CAS  Google Scholar 

  69. Dallman M, Bhatnagar S (2001) Chronic stress and energy balance:Role of the HPA axis. In: Epel E et al (eds) Are stress eaters at risk for the metabolic syndrome? Ann NY Acad Sci 1032:208–210

    Google Scholar 

  70. Houshyar H, Manalo S, Dallman MF (2004) Time-dependent alterations in mRNA expression of brain neuropeptides regulating energy balance and hypothalamo-pituitary-adrenal activity after withdrawal from intermittent morphine treatment. J Neurosci 24:9414–9424

    PubMed  CAS  Google Scholar 

  71. Heinrichs SC, Richard D (1999) The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 33:350–359

    PubMed  CAS  Google Scholar 

  72. Hotta M et al (1999) Corticotropin-releasing factor receptor type 1 mediates emotional stress induced inhibition of food intake and behavioral changes in rats. Brain Res 823:221–225

    PubMed  CAS  Google Scholar 

  73. Krahn DD et al (1988) Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain Res 443:63–69

    PubMed  CAS  Google Scholar 

  74. Richard D, Lin Q, Timofeeva E (2002) The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 440:189–197

    PubMed  CAS  Google Scholar 

  75. Sullivan EL et al (2006) Individual differences in physical activity are closely associated with changes in body weight in adult female rhesus monkeys (Macaca mulatta). Am J Physiol Regul Integr Comp Physiol 291:R633–642

    PubMed  CAS  Google Scholar 

  76. Michopoulos V, Wilson ME (2011) Body weight decreases induced by estradiol in female rhesus monkeys are dependent upon social status. Physiol Behav 102:382–388

    PubMed  CAS  Google Scholar 

  77. Foster MT et al (2008) Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropin and corticosterone concentrations after restraint. Endocrinology 150:2325–2333

    PubMed  Google Scholar 

  78. Pecoraro N et al (2004) Stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    PubMed  CAS  Google Scholar 

  79. Tamashiro KL, Hegeman MA, Sakai RR (2006) Chronic social stress in a changing dietary environment. Physiol Behav 89:536–542

    PubMed  CAS  Google Scholar 

  80. Moyer AE et al (1994) Stress-induced cortisol response and fat distribution in women. Obes Res 2:255–262

    PubMed  CAS  Google Scholar 

  81. Zakrzewska KE et al (1997) Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes 46:717–719

    PubMed  CAS  Google Scholar 

  82. Andrews RC, Walker BR (1999) Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond) 96:513–523

    CAS  Google Scholar 

  83. Leal-Cerro A et al (2001) Influence of cortisol status on leptin secretion. Pituitary 4:111–116

    PubMed  CAS  Google Scholar 

  84. Fu JH et al (2009) The combination of a high-fat diet and chronic stress aggravates insulin resistance in Wistar male rats. Exp Clin Endocrinol Diabetes 117:354–360

    PubMed  CAS  Google Scholar 

  85. Caspi A et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    PubMed  CAS  Google Scholar 

  86. Stice E et al (2008) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322:449–452

    PubMed  CAS  Google Scholar 

  87. Bennett AJ et al (2002) Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 7:118–122

    PubMed  CAS  Google Scholar 

  88. Champoux M et al (2002) Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Mol Psychiatry 7:1058–1063

    PubMed  CAS  Google Scholar 

  89. Suomi SJ (2006) Risk, resilience, and gene × environment interactions in rhesus monkeys. Ann NY Acad Sci 1094:52–62

    PubMed  Google Scholar 

  90. Bagot RC, Meaney MJ (2010) Epigenetics and the biological basis of gene × environment interactions. J Am Acad Child Adolesc Psychiatry 49:752–771

    PubMed  Google Scholar 

  91. Michopoulos V et al (2010) Increased ghrelin sensitivity and calorie consumption in subordinate monkeys is affected by short-term astressin B administration. Endocine 38:227–234

    CAS  Google Scholar 

  92. Buwalda B et al (2001) Behavioral and physiological responses to stress are affected by high-fat feeding in male rats. Physiol Behav 73:371–377

    PubMed  CAS  Google Scholar 

  93. Strack AM et al (1997) A hypercaloric load induces thermogenesis but inhibits stress responses in the SNS and HPA system. Am J Physiol 272:R840–848

    PubMed  CAS  Google Scholar 

  94. Tomiyama AJ, Dallman MF, Epel ES (2011) Comfort food is comforting to those most stressed: evidence of the chronic stress response network in high stress women. Psychoneuroendocrinology 36:1513–1519

    PubMed  Google Scholar 

  95. Bell ME et al (2000) Voluntary sucrose ingestion, like corticosterone replacement, prevents the metabolic deficits of adrenalectomy. J Neuroendocrinol 12:461–470

    PubMed  CAS  Google Scholar 

  96. Bhatnagar S et al (2000) Corticosterone facilitates saccharin intake in adrenalectomized rats: does corticosterone increase stimulus salience? J Neuroendocrinol 12:453–460

    PubMed  CAS  Google Scholar 

  97. la Fleur SE et al (2004) Interaction between corticosterone and insulin in obesity: regulation of lard intake and fat stores. Endocrinology 145:2174–2185

    PubMed  Google Scholar 

  98. Kitraki E, Soulis G, Gerozissis K (2004) Impaired neuroendocrine response to stress following a short-term fat-enriched diet. Neuroendocrinology 79:338–345

    PubMed  CAS  Google Scholar 

  99. Legendre A, Harris RB (2006) Exaggerated response to mild stress in rats fed high-fat diet. Am J Physiol Regul Integr Comp Physiol 291:R1288–1294

    PubMed  CAS  Google Scholar 

  100. Legendre A et al (2007) Differences in response to corticotropin-releasing factor after short- and long-term consumption of a high-fat diet. Am J Physiol 293:R1076–1085

    CAS  Google Scholar 

  101. Soulis G, Kitraki E, Gerozissis K (2005) Early neuroendocrine alterations in female rats following a diet moderately enriched in fat. Cell Mol Neurobiol 25:869–880

    PubMed  Google Scholar 

  102. Tannenbaum BM et al (1997) High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol 273:E1168–1177

    PubMed  CAS  Google Scholar 

  103. Pasquali R et al (2002) Cortisol and ACTH response to oral dexamethasone in obesity and effects of sex, body fat distribution, and dexamethasone concentrations: a dose-response study. J Clin Endocrinol Metab 87:166–175

    PubMed  CAS  Google Scholar 

  104. Rosmond R, Dallman MF, Bjorntorp P (1998) Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 83:1853–1859

    PubMed  CAS  Google Scholar 

  105. Vicennati V, Pasquali R (2000) Abnormalities of the hypothalamic-pituitary-adrenal axis in nondepressed women with abdominal obesity and relations with insulin resistance: evidence for a central and a peripheral alteration. J Clin Endocrinol Metab 85:4093–4098

    PubMed  CAS  Google Scholar 

  106. Alsio J et al (2009) Inverse association of high-fat diet preference and anxiety-like behavior: a putative role for urocortin 2. Genes Brain Behav 8:193–202

    PubMed  CAS  Google Scholar 

  107. Teegarden SL, Bale TL (2007) Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry 61:1021–1029

    PubMed  Google Scholar 

  108. Volkow ND, Fowler JS, Wang GJ (2003) The addicted human brain: insights from imaging studies. J Clin Invest 111:1444–1451

    PubMed  CAS  Google Scholar 

  109. Kalivas PW, Duffy P (1989) Similar effects of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biol Psychiatry 25:913–928

    PubMed  CAS  Google Scholar 

  110. Izzo E, Sanna PP, Koob GF (2005) Impairment of dopaminergic system function after chronic treatment with corticotropin-releasing factor. Pharmacol Biochem Behav 81:701–708

    PubMed  CAS  Google Scholar 

  111. Koob GF (2000) Neurobiology of addiction. Toward the development of new therapies. Ann NY Acad Sci 909:170–185

    PubMed  CAS  Google Scholar 

  112. Lucas LR et al (2006) Excitability of dopamine neurons: modulation and physiological consequences. CNS Neurol Disord Drug Targets 5:79–97

    Google Scholar 

  113. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641

    PubMed  CAS  Google Scholar 

  114. Wang GJ et al (2004) Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 23:39–53

    PubMed  Google Scholar 

  115. Bassareo V, Di Chiara G (1999) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89:637–641

    PubMed  CAS  Google Scholar 

  116. Blackburn JR et al (1986) Increased dopamine metabolism in the nucleus accumbens and striatum following consumption of a nutritive meal but not a palatable non-nutritive saccharin solution. Pharmacol Biochem Behav 25:1095–1100

    PubMed  CAS  Google Scholar 

  117. Small DM, Jones-Gotman M, Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage 19:1709–1715

    PubMed  Google Scholar 

  118. Grant KA et al (1998) Effect of social status on striatal dopamine D2 receptor binding characteristics in cynomolgus monkeys assessed with positron emission tomography. Synapse 29:80–83

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jennifer Whitley, Shannon Bounar, Jodi Godfrey, Christine Marsteller, Jonathon Lowe, Rebecca Herman, Robert Johnston, and Gregory Henry for their expert technical assistance in conducting the feeding studies. We also thank Dr. Donna Toufexis for helping shape our understanding of stress–feeding relationships. These studies would not have been possible without the dedication of the animal husbandry staff at the Yerkes National Primate Research Center (YNPRC) and support by NIH grants HD46501 (MW), MH081816 (DT), and RR00165, and F31MH085445 (VM). Further support was provided by the Center for Behavioral Neuroscience through the STC Program of the National Science Foundation IBN-9876754. The YNPRC is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Wilson PH.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Michopoulos, V., Moore, C., Wilson, M.E. (2013). Psychosocial Stress and Diet History Promote Emotional Feeding in Female Rhesus Monkeys. In: Avena, N. (eds) Animal Models of Eating Disorders. Neuromethods, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-104-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-104-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-103-5

  • Online ISBN: 978-1-62703-104-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics