Skip to main content

Multiplexed Surface Plasmon Resonance Imaging for Protein Biomarker Analysis

  • Protocol
  • First Online:
Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

The reliable detection of ligand and analyte binding is of significant importance for the field of medical diagnostics. Recent advances in proteomics and the rapid expansion in the number of identified protein biomarkers enhance the need for reliable techniques for their identification in complex samples. Surface plasmon resonance imaging (SPRi) provides label-free detection of this binding process in real-time. This chapter details the fabrication of an SPR imaging instrument and its use in analyzing molecular binding interactions with the use of a high-density microfluidic SPRi chip, capable of multiplexed analysis as well as various immobilization chemistries. Controlled recovery of bound biomarkers is demonstrated to enable their identification using mass spectrometry. Finally, activated leukocyte cell adhesion molecule (ALCAM), a protein biomarker associated with a variety of cancers, is identified from human crude cell lysates using the microfluidic surface plasmon resonance imaging (SPRi) instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piliarik M, Vaisocherová H, Homola J (2005) A new surface plasmon resonance sensor for high-throughput screening applications. Biosens Bioelectron 20:2104–2110

    Article  CAS  Google Scholar 

  2. Wassaf D, Kuang G, Kopacz K, Wu Q-L, Nguyen Q, Toews M, Cosic J, Jacques J, Wiltshire S, Lambert J, Pazmany CC, Hogan S, Ladner RC, Nixon AE, Sexton DJ (2006) High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem 351:241–253

    Article  CAS  Google Scholar 

  3. Shumaker-Parry JS, Aebersold R, Campbell CT (2004) Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal Chem 76:2071–2082

    Article  CAS  Google Scholar 

  4. Boozer C, Kim G, Cong S, Guan H, Londergan T (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17:400–405

    Article  CAS  Google Scholar 

  5. Luo Y, Yu F, Zare RN (2008) Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8:694–700

    Article  CAS  Google Scholar 

  6. Rothenhausler B, Knoll W (1988) Surface–plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  7. Yeatman E, Ash EA (1987) Surface plasmon microscopy. Electron Lett 23:1091–1092

    Article  Google Scholar 

  8. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392

    Article  CAS  Google Scholar 

  9. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54:3–15

    Article  Google Scholar 

  10. Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT (2004) Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy. Anal Chem 76:918–929

    Article  CAS  Google Scholar 

  11. Li Y, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78:3158–3164

    Article  CAS  Google Scholar 

  12. Malic L, Veres T, Tabrizian M (2009) Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens Bioelectron 24:2218–2224

    Article  CAS  Google Scholar 

  13. Goodrich TT, Lee HJ, Corn RM (2004) Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. J Am Chem Soc 126:4086–4087

    Article  CAS  Google Scholar 

  14. Wegner GJ, Lee HJ, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein–protein and protein–DNA interactions. Anal Chem 75:4740–4746

    Article  CAS  Google Scholar 

  15. Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79:1082–1088

    Article  CAS  Google Scholar 

  16. Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope–antibody interactions using surface plasmon resonance imaging. Anal Chem 74:5161–5168

    Article  CAS  Google Scholar 

  17. Lee K-H, Su Y-D, Chen S-J, Tseng F-G, Lee G-B (2007) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron 23:466–472

    Article  CAS  Google Scholar 

  18. Lausted CG, Hu Z, Hood LE (2008) Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics 7(12):2464–2474

    Article  CAS  Google Scholar 

  19. Fu E, Chinowsky T, Nelson K, Johnston K, Edwards T, Helton K, Grow M, Miller JW, Yager P (2007) SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Ann N Y Acad Sci 1098:335–344

    Article  CAS  Google Scholar 

  20. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6

    Article  CAS  Google Scholar 

  21. Bravman T, Bronner V, Lavie K, Notcovich A, Papalia GA, Myszka DG (2006) Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. Anal Biochem 358:281–288

    Article  CAS  Google Scholar 

  22. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  CAS  Google Scholar 

  23. Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka DG (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120

    Article  CAS  Google Scholar 

  24. Barry R, Ivanov D (2004) Microfluidics in biotechnology. J Nanobiotechnol 2:2

    Article  Google Scholar 

  25. Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20:2488–2503

    Article  CAS  Google Scholar 

  26. deMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Article  CAS  Google Scholar 

  27. Khandurina J, Guttman A (2002) Bioanalysis in microfluidic devices. J Chromatogr A 943:159–183

    Article  CAS  Google Scholar 

  28. Wang Z, Wilkop T, Xu D, Dong Y, Ma G, Cheng Q (2007) Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips. Anal Bioanal Chem 389:819–825

    Article  CAS  Google Scholar 

  29. Ouellet E, Lausted C, Lin T, Yang CWT, Hood L, Lagally ET (2010) Parallel microfluidic surface plasmon resonance imaging arrays. Lab Chip 10:581–588

    Article  CAS  Google Scholar 

  30. Burkhardt M, Mayordomo E, Winzer K-J, Fritzsche F, Gansukh T, Pahl S, Weichert W, Denkert C, Guski H, Dietel M, Kristiansen G (2006) Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J Clin Pathol 59:403–409

    Article  CAS  Google Scholar 

  31. Vaisocherová H, Faca VM, Taylor AD, Hanash S, Jiang S (2009) Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens Bioelectron 24:2143–2148

    Article  Google Scholar 

  32. Kristiansen G, Pilarsky C, Wissmann C, Stephan C, Weissbach L, Loy V, Loening S, Dietel M, Rosenthal A (2003) ALCAM/CD166 is up-regulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate 54:34–43

    Article  Google Scholar 

  33. Faca VM, Song KS, Wang H, Zhang Q, Krasnoselsky AL, Newcomb LF, Plentz RR, Gurumurthy S, Redston MS, Pitteri SJ, Pereira-Faca SR, Ireton RC, Katayama H, Glukhova V, Phanstiel D, Brenner DE, Anderson MA, Misek D, Scholler N, Urban ND, Barnett MJ, Edelstein C, Goodman GE, Thornquist MD, McIntosh MW, DePinho RA, Bardeesy N, Hanash SM (2008) A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 5:e123

    Article  Google Scholar 

  34. Pitteri SJ, JeBailey L, Faça VM, Thorpe JD, Silva MA, Ireton RC, Horton MB, Wang H, Pruitt LC, Zhang Q, Cheng KH, Urban N, Hanash SM, Dinulescu DM (2009) Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery. PLoS One 4:e7916

    Article  Google Scholar 

  35. Rosso O, Piazza T, Bongarzone I, Rossello A, Mezzanzanica D, Canevari S, Orengo AM, Puppo A, Ferrini S, Fabbi M (2007) The ALCAM shedding by the metalloprotease ADAM17/TACE is involved in motility of ovarian carcinoma cells. Mol Cancer Res 5:1246–1253

    Article  CAS  Google Scholar 

  36. van Kempen LCLT, van den Oord JJ, van Muijen GNP, Weidle UH, Bloemers HPJ, Swart GWM (2000) Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am J Pathol 156:769–774

    Article  Google Scholar 

  37. Rappsilber J, Ishihama Y, Mann M (2002) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Leonard Foster for his advice and continued support, Dr. Leroy Hood and Christopher Lausted for their contributions to the microfluidic device design, Anders Riss Kristensen for his technical assistance with HeLa cell culture and Dr. Robert Parker for technical assistance with mass spectrometry analysis. Microfabrication was performed in the UBC Nanolab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric T. Lagally .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Ouellet, E., Lund, L., Lagally, E.T. (2013). Multiplexed Surface Plasmon Resonance Imaging for Protein Biomarker Analysis. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics