Skip to main content

Chiral Separations by HPLC on Immobilized Polysaccharide Chiral Stationary Phases

  • Protocol
  • First Online:
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 970))

Abstract

Immobilized polysaccharide chiral stationary phases (CSPs) are a new development in chiral chromatography with increasing importance for the resolution of racemic compounds. These CSPs can be used with solvents traditionally applied for the classical coated polysaccharide CSPs as well as solvents that were “forbidden” for the coated phases such as tetrahydrofuran, chloroform, dichloromethane, acetone, 1,4-dioxane, ethylacetate, and certain ethers. However, these forbidden solvents may be required for the determination of the chiral recognition mechanism. Therefore, the immobilized CSPs are effective for the evaluation of chiral recognition mechanisms. Furthermore, immobilized chiral columns are also useful for monitoring the progress of stereospecific synthetic reactions which are normally performed in such solvents. The present chapter describes the detailed experimental protocol of a chiral resolution on immobilized polysaccharides CSPs by HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboul-Enein HY, Ali I (2003) Chiral separations by liquid chromatography and related technologies. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  2. FDA (1992) Policy statements for the development of new stereoisomeric drugs. FDA, Rockville, MD

    Google Scholar 

  3. Chen X, Yamamoto C, Okamoto Y (2007) Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. Pure Appl Chem 79:1561–1573

    Article  CAS  Google Scholar 

  4. Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37:2593–2608

    Article  PubMed  CAS  Google Scholar 

  5. Okamoto Y, Kawashima M, Hatada K (1986) Chromatographic resolution: XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J Chromatogr 363:173–186

    Article  CAS  Google Scholar 

  6. Ali I, Naim L, Ghanem A, Aboul-Enein HY (2006) Chiral separations of piperidine-2,6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta 69:1013–1017

    Article  PubMed  CAS  Google Scholar 

  7. Ali I, Aboul-Enein HY (2006) Role of polysaccharides in chiral separations by liquid chromatography and capillary electrophoresis. In: Subramanian G (ed) Chiral separation techniques: a practical approach, 3rd edn. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  8. Franco P, Senso A, Oliveros L, Migullion C (2001) Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906:155–170

    Article  PubMed  CAS  Google Scholar 

  9. Francotte E (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397

    Article  PubMed  CAS  Google Scholar 

  10. Marshalland DL, Walter J (1972) Polysaccharide synthesis on immobilized phosphorylase. Carbohydr Res 25:489–495

    Article  Google Scholar 

  11. Francotte E, Huynh D (2002) Comparison of three chiral stationary phases with respect to their enantio- and diastereoselectivity for cyclic β-substituted α-amino acids. J Pharm Biomed Anal 27:421–429

    Article  PubMed  CAS  Google Scholar 

  12. Method development with Chiralpak IA and Chiralpak IB columns (2004) Chiral Technologies, p. 1–4., Europe, France, www.chiral.fr

  13. Zhang T, Schaeffer M, Franco P (2005) Optimization of the chiral separation of a Ca-sensitizing drug on an immobilized polysaccharide-based chiral stationary phase: case study with a preparative perspective. J Chromatogr A 1083:96–101

    Article  PubMed  CAS  Google Scholar 

  14. Zhang T, Kientzy C, Franco P, Ohnishi A, Kagamihara Y, Kurosawa H (2005) Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J Chromatogr A 1075:65–75

    Article  PubMed  CAS  Google Scholar 

  15. Duquesne J, Vanthuyne N, Rafii E, Roussel C (2004) 16th International symposium on chirality, New York, 121–14 Jul 2004

    Google Scholar 

  16. Cirilli R, Orlando V, Ferretti R, Turchetto L, Silvestri R, Martino G, Latorre F (2006) Direct HPLC enantioseparation of chiral aptazepine derivatives on coated and immobilized polysaccharide-based chiral stationary phases. Chirality 18:621–632

    Article  PubMed  CAS  Google Scholar 

  17. Ghanem A, Aboul-Enein HY (2005) On the solvent versatility in immobilized amylose tris(3,5-dimethylphenylcarbamate) chiral ­stationary phase in high performance liquid chromatography: application to the ­asymmetric cyclopropanation of olefins. Anal Chim Acta 548:26–32

    Article  CAS  Google Scholar 

  18. Sanna ML, Maccioni E, Vigo S, Faggi C, Cirilli R (2010) Application of an immobilised amylose-based chiral stationary phase to the development of new monoamine oxidase B inhibitors. Talanta 82:426–431

    Article  PubMed  CAS  Google Scholar 

  19. Francotte ER, Zhang T (1995) European Patent WO 97/04011, Priority 21 Jul 1995

    Google Scholar 

  20. Tang S, Ikai T, Tsuji M, Okamoto Y (2010) Immobilization of 3,5-dimethylphenylcarbamates of cellulose and amylose onto silica gel using (3-glycidoxypropyl)triethoxysilane as linker. J Sep Sci 33:1255–1263

    PubMed  CAS  Google Scholar 

  21. Ferretti R, Gallinella B, La Torre F, Zanitti L, Turchetto L, Mosca A, Cirilli R (2009) Direct high-performance liquid chromatography enantioseparation of terazosin on an immobilised polysaccharide-based chiral stationary phase under polar organic and reversed-phase conditions. J Chromatogr A 1216:5385–5390

    Article  PubMed  CAS  Google Scholar 

  22. Franco P, Zhang T (2008) Common approaches for efficient method development with immobilized polysaccharide-derived chiral stationary phases. J Chromatogr B 875:48–56

    Article  CAS  Google Scholar 

  23. Zhang T, Nguyen D, Franco P (2008) Enantiomer resolution screening strategy using multiple immobilized polysaccharide-based ­chiral stationary phases. J Chromatogr A 1191:214–222

    Article  PubMed  CAS  Google Scholar 

  24. Zhang T, Nguyen D, Franco P (2010) Reversed-phase screening strategies for liquid chromatography on polysaccharide-derived chiral stationary phases. J Chromatogr A 1217:1048–1055

    Article  PubMed  CAS  Google Scholar 

  25. Ciogli A, Bicker W, Lindner W (2010) Determination of enantiomerization barriers of hypericin and pseudohypericin by dynamic high-performance liquid chromatography on immobilized polysaccharide-type chiral stationary phases and off-column racemization experiments. Chirality 22:463–471

    PubMed  CAS  Google Scholar 

  26. Qin F, Chen X, Kong L, Zou H (2004) Enantiomer separation of dimethyl dicarboxy α-biphenyl (DDB) and its analogues on a covalently bonded cellulose tris-(3,5-dimethylphenyl-carbamate) CSP. J Sep Sci 27:1195–1201

    Article  PubMed  CAS  Google Scholar 

  27. Nadalini G, Dondi F, Massi A, Dondoni A, Zhang T, Cavazzini A (2006) High-performance liquid chromatographic separation of dihydropyrimidine racemates on polysaccharide-derived chiral stationary phases. J Chromatogr A 1126:357–364

    Article  PubMed  CAS  Google Scholar 

  28. Thunberg L, Hashemi J, Andersson S (2008) Comparative study of coated and immobilized polysaccharide-based chiral stationary phases and their applicability in the resolution of enantiomers. J Chromatogr B 875:72–80

    Article  CAS  Google Scholar 

  29. Mitchell CR, Benz NJ, Zhang S (2008) Comparison of the factors that contribute to retention on immobilized polysaccharide-based chiral stationary phases and macrocyclic glycopeptides chiral stationary phases with the Abraham model. J Chromatogr B 875:65–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Zeid A. AL-Othman would like to thank the Research Center, College of Science, King Saud University, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Y. Aboul-Enein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ali, I., AL-Othman, Z.A., Aboul-Enein, H.Y. (2013). Chiral Separations by HPLC on Immobilized Polysaccharide Chiral Stationary Phases. In: Scriba, G. (eds) Chiral Separations. Methods in Molecular Biology, vol 970. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-263-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-263-6_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-262-9

  • Online ISBN: 978-1-62703-263-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics