Skip to main content

Chromatin Assembly and In Vitro Transcription Analyses for Evaluation of Individual Protein Activities in Multicomponent Transcriptional Complexes

  • Protocol
  • First Online:
Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 977))

  • 5365 Accesses

Abstract

Eukaryotic DNA and core histones form the fundamental repeating units of chromatin. Condensed c­hromatin, which has higher-order structures, prevents transcriptional complexes from accessing their target genes. Epigenetic regulation, including structural changes of chromatin, histone modification, and DNA methylation, strictly controls the pattern of gene expression and silencing. Recent studies have revealed that histone acetylation plays a crucial role in relaxing chromatin structure for initiation of transcription. Crosstalk between DNA-binding transcription factors and histone acetyltransferases (HATs) serves as a key mechanism for regulating gene expression and developmental processes. However, the precise roles of multicomponent transcriptional complexes have not been fully elucidated because of technical difficulties in using in vitro experimental systems. Previously we demonstrated that the DNA-binding transcription factor Sox9, HAT coactivator p300, and other regulatory factors (Smad3/4) cooperatively activate Sox9-dependent transcription on chromatin. Here, we describe an experimental approach to investigate the function of each component on reconstructed chromatin in vitro. Our methods offer a useful system for analyzing the additional effect of a third component in a transcriptional complex on chromatin structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  PubMed  CAS  Google Scholar 

  2. Quina AS, Buschbeck M, Di Croce L (2006) Chromatin structure and epigenetics. Biochem Pharmacol 72:1563–1569

    Article  PubMed  CAS  Google Scholar 

  3. Wolffe AP, Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27:711–720

    Article  PubMed  CAS  Google Scholar 

  4. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  5. Furumatsu T, Ozaki T (2010) Epigenetic regulation in chondrogenesis. Acta Med Okayama 64:155–161

    PubMed  CAS  Google Scholar 

  6. Akiyama H, Chaboissier MC, Martin JF et al (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  PubMed  CAS  Google Scholar 

  7. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  8. Kamachi Y, Uchikawa M, Kondoh H (2000) Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 16:182–187

    Article  PubMed  CAS  Google Scholar 

  9. Tsuda M, Takahashi S, Takahashi Y et al (2003) Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem 278:27224–27229

    Article  PubMed  CAS  Google Scholar 

  10. Furumatsu T, Tsuda M, Yoshida K et al (2005) Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 280:35203–35208

    Article  PubMed  CAS  Google Scholar 

  11. Liu F (2003) Receptor-regulated Smads in TGF-β signaling. Front Biosci 8:s1280–s1303

    Article  PubMed  CAS  Google Scholar 

  12. Furumatsu T, Tsuda M, Taniguchi N et al (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280:8343–8350

    Article  PubMed  CAS  Google Scholar 

  13. Furumatsu T, Asahara H (2010) Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama 64:351–357

    PubMed  CAS  Google Scholar 

  14. Ferguson CM, Schwarz EM, Reynolds PR et al (2000) Smad2 and 3 mediate transforming growth factor-β1-induced inhibition of chondrocyte maturation. Endocrinology 141:4728–4735

    Article  PubMed  CAS  Google Scholar 

  15. Furumatsu T, Ozaki T, Asahara H (2009) Smad3 activates the Sox9-dependent transcription on chromatin. Int J Biochem Cell Biol 41:1198–1204

    Article  PubMed  CAS  Google Scholar 

  16. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489

    Article  PubMed  CAS  Google Scholar 

  17. Ito T, Bulger M, Kobayashi R et al (1996) Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 16:3112–3124

    PubMed  CAS  Google Scholar 

  18. Ito T, Levenstein ME, Fyodorov DV et al (1999) ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev 13:1529–1539

    Article  PubMed  CAS  Google Scholar 

  19. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114:2363–2373

    PubMed  CAS  Google Scholar 

  20. Asahara H, Santoso B, Guzman E et al (2001) Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB. Mol Cell Biol 21:7892–7900

    Article  PubMed  CAS  Google Scholar 

  21. Fyodorov DV, Kadonaga JT (2003) Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol 371:499–515

    Article  PubMed  CAS  Google Scholar 

  22. Konesky KL, Laybourn PJ (2007) Biochemical analyses of transcriptional regulatory mechanisms in a chromatin context. Methods 41:259–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Takashi Ito and Dr. Toshifumi Ozaki for their kind assistance. This work was supported by Okayama Medical Foundation, Japan Orthopaedics and Traumatology Foundation (No. 225), and JSPS Fujita Memorial Fund for Medical Research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Furumatsu, T., Asahara, H. (2013). Chromatin Assembly and In Vitro Transcription Analyses for Evaluation of Individual Protein Activities in Multicomponent Transcriptional Complexes. In: Bina, M. (eds) Gene Regulation. Methods in Molecular Biology, vol 977. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-284-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-284-1_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-283-4

  • Online ISBN: 978-1-62703-284-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics