Skip to main content

Isotopically Nonstationary 13C Metabolic Flux Analysis

  • Protocol
  • First Online:
Systems Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 985))

Abstract

13C metabolic flux analysis (MFA) is a powerful approach for quantifying cell physiology based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary 13C MFA (INST-MFA), which is applicable to systems that are at metabolic steady state, but are sampled during the transient period prior to achieving isotopic steady state following the introduction of a 13C tracer. We describe protocols for performing the necessary isotope labeling experiments, for quenching and extraction of intracellular metabolites, for mass spectrometry (MS) analysis of metabolite labeling, and for computational flux estimation using INST-MFA. By combining several recently developed experimental and computational techniques, INST-MFA provides an important new platform for mapping carbon fluxes that is especially applicable to animal cell cultures, autotrophic organisms, industrial bioprocesses, high-throughput experiments, and other systems that are not amenable to steady-state 13C MFA experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  2. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  Google Scholar 

  3. Antoniewicz MR, Kraynie DF, Laffend LA et al (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277–292

    Article  CAS  Google Scholar 

  4. Noguchi Y, Young JD, Aleman JO et al (2009) Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. J Biol Chem 284:33425–33436

    Article  CAS  Google Scholar 

  5. Nöh K, Grönke K, Luo B et al (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129:249–267

    Article  Google Scholar 

  6. Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13:745–755

    Article  CAS  Google Scholar 

  7. Lequeux G, Beauprez J, Maertens J et al (2010) Dynamic metabolic flux analysis demonstrated on cultures where the limiting substrate is changed from carbon to nitrogen and vice versa. J Biomed Biotechnol 2010:1–19

    Article  Google Scholar 

  8. Wahl SA, Nöh K, Wiechert W (2008) 13C labeling experiments at metabolic nonstationary conditions: an exploratory study. BMC Bioinforma 9:152

    Article  Google Scholar 

  9. Shastri AA, Morgan JA (2007) A transient isotopic labeling methodology for 13C metabolic flux analysis of photoautotrophic microorganisms. Phytochemistry 68:2302–2312

    Article  CAS  Google Scholar 

  10. Young JD, Shastri AA, Stephanopoulos G et al (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13:656–665

    Article  CAS  Google Scholar 

  11. Zhao Z, Kuijvenhoven K, Ras C et al (2008) Isotopic non-stationary 13C gluconate tracer method for accurate determination of the pentose phosphate pathway split-ratio in Penicillium chrysogenum. Metab Eng 10:178–186

    Article  CAS  Google Scholar 

  12. Maier K, Hofmann U, Bauer A et al (2009) Quantification of statin effects on hepatic cholesterol synthesis by transient (13)C-flux analysis. Metab Eng 11:292–309

    Article  CAS  Google Scholar 

  13. Maier K, Hofmann U, Reuss M et al (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: part II. Flux estimation. Biotechnol Bioeng 100:355–370

    Article  CAS  Google Scholar 

  14. Munger J, Bennett BD, Parikh A et al (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26:1179–1186

    Article  CAS  Google Scholar 

  15. Iwatani S, Yamada Y, Usuda Y (2008) Metabolic flux analysis in biotechnology processes. Biotechnol Lett 30:791–799

    Article  CAS  Google Scholar 

  16. Nöh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8:554–577

    Article  Google Scholar 

  17. Wiechert W, Nöh K (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 92:145–172

    CAS  Google Scholar 

  18. Schaub J, Mauch K, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99:1170–1185

    Article  CAS  Google Scholar 

  19. Young JD, Walther JL, Antoniewicz MR et al (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99:686–699

    Article  CAS  Google Scholar 

  20. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9:68–86

    Article  CAS  Google Scholar 

  21. Noh K, Wiechert W (2006) Experimental design principles for isotopically instationary C labeling experiments. Biotechnol Bioeng 94:234–251

    Article  Google Scholar 

  22. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63

    Article  CAS  Google Scholar 

  23. Folch J, Lees M, Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  24. Huege J, Sulpice R, Gibon Y et al (2007) GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry 68:2258–2272

    Article  CAS  Google Scholar 

  25. Yoo H, Antoniewicz MR, Stephanopoulos G et al (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283:20621–20627

    Article  CAS  Google Scholar 

  26. Ausloos P, Clifton CL, Lias SG et al (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10:287–299

    Article  CAS  Google Scholar 

  27. Kopka J, Schauer N, Krueger S et al (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  CAS  Google Scholar 

  28. Kind T, Wohlgemuth G, Lee DY et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048

    Article  CAS  Google Scholar 

  29. Smith CA, O’Maille G, Want EJ et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  30. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526

    Article  CAS  Google Scholar 

  31. Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Article  CAS  Google Scholar 

  32. Glacken MW, Adema E, Sinskey AJ (1988) Mathematical descriptions of hybridoma culture kinetics: I. Initial metabolic rates. Biotechnol Bioeng 32:491–506

    Article  CAS  Google Scholar 

  33. Goudar CT (2012) Computer programs for modeling mammalian cell batch and fed-batch cultures using logistic equations. Cytotechnology 64(4):465–475

    Article  CAS  Google Scholar 

  34. Kim J-w, Tchernyshyov I, Semenza GL et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  Google Scholar 

  35. Zupke C, Sinskey AJ, Stephanopoulos G (1995) Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol 44:27–36

    Article  CAS  Google Scholar 

  36. Zamboni N, Fendt S-M, Rühl M et al (2009) (13)C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  Google Scholar 

  37. Oldiges M, Kunze M, Degenring D et al (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    Article  CAS  Google Scholar 

  38. Roessner U, Wagner C, Kopka J et al (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142

    Article  CAS  Google Scholar 

  39. Luo B, Groenke K, Takors R et al (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  CAS  Google Scholar 

  40. Kitson FG, Larsen BS, McEwen CN (1996) Gas chromatography and mass spectrometry: a practical guide. Academic, San Diego

    Google Scholar 

  41. Kiefer P, Nicolas C, Letisse F et al (2007) Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 360:182–188

    Article  CAS  Google Scholar 

  42. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79:7554–7559

    Article  CAS  Google Scholar 

  43. Fernandez CA, Des Rosiers C, Previs SF et al (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262

    Article  CAS  Google Scholar 

  44. Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific labeling information in 13C metabolic flux analysis of plants. Phytochemistry 68:2197–2210

    Article  CAS  Google Scholar 

  45. Coplen TB, Bohlke JK, De Bievre P et al (2002) Isotope-abundance variations of selected elements: (IUPAC technical report). Pure Appl Chem 74:1987–2017

    Article  CAS  Google Scholar 

  46. Dulmage AL, Mendelsohn NS (1958) Coverings of bipartite graphs. Canad J Math 10:517–534

    Article  Google Scholar 

  47. Pothen A, Fan CJ (1990) Computing the block triangular form of a sparse matrix. ACM Trans Math Softw 16:303–324

    Article  Google Scholar 

  48. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic, London

    Google Scholar 

  49. Madsen K, Nielsen HB, Tigleff O (2004). Methods for non-linear least squares problems. http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3215.

  50. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8:324–337

    Article  CAS  Google Scholar 

  51. Conover WJ (1999) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  52. Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609

    Article  CAS  Google Scholar 

  53. Rohn H, Hartmann A, Junker A et al (2012) FluxMap: a VANTED Add-on for the visual exploration of flux distributions in biological networks. BMC Syst Biol 6:33

    Article  Google Scholar 

  54. König M, Holzhütter H-G (2010) Fluxviz—cytoscape plug-in for visualization of flux distributions in networks. Genome informatics International conference on genome informatics 24:96–103

    Google Scholar 

  55. Hoppe A, Hoffmann S, Gerasch A et al (2011) FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 12:28

    Article  Google Scholar 

  56. Droste P, Miebach S, Niedenführ S et al (2011) Visualizing multi-omics data in metabolic networks with the software Omix: a case study. Biosystems 105:154–161

    Article  CAS  Google Scholar 

  57. Paley SM, Karp PD (2006) The pathway tools cellular overview diagram and omics viewer. Nucleic Acids Res 34:3771–3778

    Article  CAS  Google Scholar 

  58. Matthews L, Gopinath G, Gillespie M et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622

    Article  CAS  Google Scholar 

  59. Kono N, Arakawa K, Ogawa R et al (2009) Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One 4:e7710

    Article  Google Scholar 

  60. Lee SY, Lee D-Y, Hong SH et al (2003) MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome informatics International conference on genome informatics 14:23–33

    CAS  Google Scholar 

  61. Rocha I, Maia P, Evangelista P et al (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF EF-1219603. LJJ was supported by a GAANN fellowship from the US Department of Education under grant number P200A090323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamey D. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jazmin, L.J., Young, J.D. (2013). Isotopically Nonstationary 13C Metabolic Flux Analysis. In: Alper, H. (eds) Systems Metabolic Engineering. Methods in Molecular Biology, vol 985. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-299-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-299-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-298-8

  • Online ISBN: 978-1-62703-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics