Skip to main content

Measurement of P450 Difference Spectra Using Intact Cells

  • Protocol
  • First Online:
Cytochrome P450 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 987))

Abstract

Whole-cell assays provide a rapid means of determining expression and substrate binding for cytochrome P450 enzymes expressed heterologously in Escherichia coli and, potentially, other host cells. Such assays are particularly useful for screening large libraries of mutant P450s, where rapid, high-throughput assays are needed for first-tier screens that can, firstly, quantify any P450 form independent of P450 subfamily and, secondly, suggest possible ligands before more labor-intensive direct measurement of substrate turnover. Whole-cell spectral techniques are derived from methods that have been used for a long time to study P450s in microsomal or other subcellular fractions (Omura T and Sato R, J Biol Chem 239:2370–2378, 1964; Schenkman JB et al., Biochemistry 11:4243–4251, 1972), but recent studies have detailed important modifications which allow quantitative results to be obtained in whole cells (Otey CR, Methods in Molecular Biology, vol. 230, Humana, Totowa, NJ, pp. 137–139, 2003; Johnston WA et al., J Biomol Screen 13:135–141, 2008). A general method is presented here for the measurement of difference spectra on recombinant P450 cultures that can be applied to both carbon monoxide and any number of alternative ligands that alter the characteristic spectral signature of P450s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abécassis V, Pompon D, Truan G (2000) High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2. Nucleic Acids Res 28:e88

    Article  PubMed  Google Scholar 

  2. Landwehr M, Carbone M, Otey CR, Li Y, Arnold FH (2007) Diversification of catalytic function in a synthetic family of chimeric cytochrome P450s. Chem Biol 14:237–238

    Article  Google Scholar 

  3. Meinhold P, Peters MW, Hartwick A, Hernandez AR, Arnold FH (2006) Engineering cytochrome P450BM3 for terminal alkane hydroxylation. Adv Synth Catal 348:763–772

    Article  CAS  Google Scholar 

  4. Sawayama AM, Chen MMY, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH (2009) A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chemistry 15:11723–11729

    Article  PubMed  CAS  Google Scholar 

  5. Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  PubMed  CAS  Google Scholar 

  6. Parikh A, Josephy PD, Guengerich FP (1999) Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry 38:5283–5289

    Article  PubMed  CAS  Google Scholar 

  7. Kim D, Guengerich FP (2004) Enhancement of 7-methoxyresorufin O-demethylation activity of human cytochrome P450 1A2 by molecular breeding. Arch Biochem Biophys 432:102–108

    Article  PubMed  CAS  Google Scholar 

  8. Johnston WA, Huang W, De Voss JJ, Hayes MA, Gillam EMJ (2007) A shuffled CYP1A library shows both structural integrity and functional diversity. Drug Metab Dispos 35:2177–2185

    Article  PubMed  CAS  Google Scholar 

  9. Huang W, Johnston WA, Hayes MA, De Voss JJ, Gillam EMJ (2007) A shuffled CYP2C library with a high degree of structural integrity and functional versatility. Arch Biochem Biophys 467:193–205

    Article  PubMed  CAS  Google Scholar 

  10. Hunter DJB et al (2011) Facile production of minor metabolites for drug development using a CYP3A shuffled library. Metab Eng 13:682–693

    Article  PubMed  CAS  Google Scholar 

  11. Otey CR (2003) High-throughput carbon monoxide binding assay for cytochromes P450. In: Arnold FH, Georgiou G (eds) Methods in molecular biology, vol 230. Humana, Totowa, NJ, pp 137–139

    Google Scholar 

  12. Lawrence JV, Maier S (1977) Correction for the inherent error in optical density readings. Appl Environ Microbiol 33:482–484

    PubMed  CAS  Google Scholar 

  13. Johnston WA, Huang W, Hayes MA, De Voss JJ, Gillam EMJ (2008) Quantitative whole cell cytochrome P450 measurement suitable for high throughput application. J Biomol Screen 13:135–141

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  15. Bauer S, Shiloach J (1974) Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor. Biotechnol Bioeng 16:933–941

    Article  PubMed  CAS  Google Scholar 

  16. Johnston WA et al (2011) Cytochrome P450 is present in both ferrous and ferric forms in the resting state within intact Escherichia coli and hepatocytes. J Biol Chem 286:40750–40759

    Article  PubMed  CAS  Google Scholar 

  17. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  18. Guengerich FP (1994) Analysis and characterization of enzymes. In: Hayes AW (ed) Principles and methods of toxicology. Raven, New York, pp 1259–1313

    Google Scholar 

  19. Schenkman JB, Cinti DL, Orrenius S, Moldeus P, Kraschnitz R (1972) The nature of the reverse type I (modified type II) spectral change in liver microsomes. Biochemistry 11:4243–4251

    Article  PubMed  CAS  Google Scholar 

  20. Lambeth DO, Palmer G (1973) The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite. J Biol Chem 248:6095–6103

    PubMed  CAS  Google Scholar 

  21. Dixon M (1971) Acceptor specificity of flavins and flavoproteins.1. Techniques for anaerobic spectrophotometry. Biochim Biophys Acta 226:241–258

    Article  PubMed  CAS  Google Scholar 

  22. SpectraMax® M2/M2e user guide, Molecular Devices, Sunnyvale, CA, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Johnston, W.A., Gillam, E.M.J. (2013). Measurement of P450 Difference Spectra Using Intact Cells. In: Phillips, I., Shephard, E., Ortiz de Montellano, P. (eds) Cytochrome P450 Protocols. Methods in Molecular Biology, vol 987. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-321-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-321-3_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-320-6

  • Online ISBN: 978-1-62703-321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics