Skip to main content

Engineering K+ Channels Using Semisynthesis

  • Protocol
  • First Online:
Chemical Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 995))

Abstract

Potassium channels conduct K+ ions selectively and at very high rates. Central to the function of K+ channels is a structural unit called the selectivity filter. In the selectivity filter, a row of four K+ binding sites are created using mainly the backbone carbonyl oxygen atoms. Due to the involvement of the protein backbone, site-directed mutagenesis is of limited utility in investigating the selectivity filter. In order to overcome this limitation, we have developed a semisynthetic approach, which permits the use of chemical synthesis to manipulate the selectivity filter. In this chapter, we describe the protocols that we have developed for the semisynthesis of the K+ channel, KcsA. We anticipate that the protocols described in this chapter will also be applicable for the semisynthesis of other integral membrane proteins of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland, MA

    Google Scholar 

  2. MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Ed 43:4265–4277

    Article  CAS  Google Scholar 

  3. LeMasurier M, Heginbotham L, Miller C (2001) KcsA: it’s a potassium channel. J Gen Physiol 118:303–314

    Article  PubMed  CAS  Google Scholar 

  4. Valiyaveetil FI, Sekedat M, MacKinnon R, Muir TW (2004) Glycine as a D-amino acid surrogate in the K(+)-selectivity filter. Proc Natl Acad Sci U S A 101:17045–17049

    Article  PubMed  CAS  Google Scholar 

  5. Valiyaveetil F, Sekedat M, MacKinnon R, Muir T (2006) Structural and functional consequences of an amide-to-ester substitution in the selectivity filter of a potassium channel. J Am Chem Soc 128:11591–11599

    Article  PubMed  CAS  Google Scholar 

  6. Valiyaveetil FI, Leonetti M, Muir TW, MacKinnon R (2006) Ion selectivity in a semisynthetic K  +  channel locked in the conductive conformation. Science 314:1004–1007

    Article  PubMed  CAS  Google Scholar 

  7. Bianchi E, Ingenito R, Simon RJ, Pessi A (1999) Engineering and chemical synthesis of a transmembrane protein: the HCV protease cofactor protein NS4A. J Am Chem Soc 121:7698–7699

    Article  CAS  Google Scholar 

  8. Kochendoerfer GG, Salom D, Lear JD, Wilk-Orescan R, Kent SBH, DeGrado WF (1999) Total chemical synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. Biochemistry 38:11905–11913

    Article  PubMed  CAS  Google Scholar 

  9. Clayton D, Shapovalov G, Maurer J, Dougherty D, Lester H, Kochendoerfer G (2004) Total chemical synthesis and electrophysiological characterization of mechanosensitive channels from Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 101:4764–4769

    Article  PubMed  CAS  Google Scholar 

  10. Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K  +  conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  11. Kent S (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957–989

    Article  PubMed  CAS  Google Scholar 

  12. Dawson PE, Muir TW, Clarklewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  PubMed  CAS  Google Scholar 

  13. Muir T (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  PubMed  CAS  Google Scholar 

  14. Valiyaveetil FI, Sekedat M, Muir TW, MacKinnon R (2004) Semisynthesis of a functional K  +  channel. Angew Chem Int Ed 43:2504–2507

    Article  CAS  Google Scholar 

  15. MacKinnon R, Cohen SL, Kuo AL, Lee A, Chait BT (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280:106–109

    Article  PubMed  CAS  Google Scholar 

  16. Valiyaveetil F, Zhou Y, MacKinnon R (2002) Lipids in the structure, folding, and function of the KcsA K  +  channel. Biochemistry 41:10771–10777

    Article  PubMed  CAS  Google Scholar 

  17. Schnolzer M, Alewood P, Jones A, Alewood D, Kent SB (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 40:180–193

    Article  PubMed  CAS  Google Scholar 

  18. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  PubMed  CAS  Google Scholar 

  19. Valiyaveetil F, MacKinnon R, Muir T (2002) Semisynthesis and folding of the potassium channel KcsA. J Am Chem Soc 124:9113–9120

    Article  PubMed  CAS  Google Scholar 

  20. Heginbotham L, LeMasurier M, Kolmakova-Partensky L, Miller C (1999) Single streptomyces lividans K(+) channels: functional asymmetries and sidedness of proton activation. J Gen Physiol 114:551–560

    Article  PubMed  CAS  Google Scholar 

  21. Komarov AG, Linn KM, Devereaux JJ, Valiyaveetil FI (2009) Modular strategy for the semisynthesis of a K  +  channel: investigating interactions of the pore helix. ACS Chem Biol 4:1029–1038

    Article  PubMed  CAS  Google Scholar 

  22. Hunter CL, Kochendoerfer GG (2004) Native chemical ligation of hydrophobic (corrected) peptides in lipid bilayer systems. Bioconjug Chem 15:437–440

    Article  PubMed  CAS  Google Scholar 

  23. Otaka A, Ueda S, Tomita K, Yano Y, Tamamura H, Matsuzaki K, Fujii N (2004) Facile synthesis of membrane-embedded peptides utilizing lipid bilayer-assisted chemical ligation. Chem Commun (Camb) 15:1722–1723

    Google Scholar 

Download references

Acknowledgements

This research was supported by grants to FIV from the NIH (GM087546), a Scientist Development Grant from the American Heart Association (0835166N) and a Pew Scholar Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Komarov, A.G., Costantino, C.A., Valiyaveetil, F.I. (2013). Engineering K+ Channels Using Semisynthesis. In: Banghart, M. (eds) Chemical Neurobiology. Methods in Molecular Biology, vol 995. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-345-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-345-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-344-2

  • Online ISBN: 978-1-62703-345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics