Skip to main content

A 1H NMR Assay for Measuring the Photostationary States of Photoswitchable Ligands

  • Protocol
  • First Online:
Chemical Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 995))

Abstract

Incorporation of photoisomerizable chromophores into small molecule ligands represents a general approach for reversibly controlling protein function with light. Illumination at different wavelengths produces photostationary states (PSSs) consisting of different ratios of photoisomers. Thus optimal implementation of photoswitchable ligands requires knowledge of their wavelength sensitivity. Using an azobenzene-based ion channel blocker as an example, this protocol describes a 1H NMR assay that can be used to precisely determine the isomeric content of photostationary states (PSSs) as a function of illumination wavelength. Samples of the photoswitchable ligand are dissolved in deuterated water and analyzed by UV/VIS spectroscopy to identify the range of illumination wavelengths that produce PSSs. The PSSs produced by these wavelengths are quantified using 1H NMR spectroscopy under continuous irradiation through a monochromator-coupled fiber-optic cable. Because aromatic protons of azobenzene trans and cis isomers exhibit sufficiently different chemical shifts, their relative abundances at each PSS can be readily determined by peak integration. Constant illumination during spectrum acquisition is essential to accurately determine PSSs from molecules that thermally relax on the timescale of minutes or faster. This general protocol can be readily applied to any photoswitch that exhibits distinct 1H NMR signals in each photoisomeric state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellis-Davies GC (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4(8):619–628

    Article  PubMed  CAS  Google Scholar 

  2. Szobota S, Isacoff EY (2010) Optical control of neuronal activity. Annu Rev Biophys 39:329–348

    Article  PubMed  CAS  Google Scholar 

  3. Miesenbock G (2011) Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27:731–758

    Article  PubMed  CAS  Google Scholar 

  4. Fehrentz T et al (2011) Optochemical genetics. Angew Chem Int Ed Engl 50(51):12156–12182

    Article  PubMed  CAS  Google Scholar 

  5. Gorostiza P, Isacoff EY (2008) Optical switches for remote and noninvasive control of cell signaling. Science 322(5900):395–399

    Article  PubMed  CAS  Google Scholar 

  6. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437

    Article  PubMed  CAS  Google Scholar 

  7. Banghart MR et al (2006) Engineering light-gated ion channels. Biochemistry 45(51):15129–15141

    Article  PubMed  CAS  Google Scholar 

  8. Rau H (2003) Azo compounds. In: Durr H, Bouas-Laurent H (eds) Photochromism: molecules and systems, revised edition. Elsevier, San Diego, pp 165–192

    Google Scholar 

  9. Knoll H (2004) Photoisomerism of azobenzenes. In: Horspool W, Lenci F (eds) CRC handbook of organic photochemistry and photobiology, 2nd edn. CRC Press, Boca Raton, pp 89/1–89/16

    Google Scholar 

  10. Hartley GS (1938) Cis form of azobenzene and the velocity of the thermal cis/trans conversion of azobenzene and some derivatives. J Chem Soc 633–642

    Google Scholar 

  11. LeFevre RJW, Northcott J (1953) The effects of substituents and solvents on the cis  →  trans change of azobenzene. J Chem Soc 867–870

    Google Scholar 

  12. Tait KM et al (2003) The novel use of NMR spectroscopy with in situ laser irradiation to study azo photoisomerization. J Photochem Photobiol A Chem 154:179–188

    Article  CAS  Google Scholar 

  13. Banghart M et al (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386

    Article  PubMed  CAS  Google Scholar 

  14. Fortin DL et al (2011) Optogenetic photochemical control of designer K+  channels in mammalian neurons. J Neurophysiol 106(1):488–496

    Article  PubMed  CAS  Google Scholar 

  15. Fischer E et al (1955) Wave length dependence of photoisomerization equilibria in azo compounds. J Chem Phys 23:1367

    Article  CAS  Google Scholar 

  16. Zimmerman G et al (1958) The photochemical isomerization of azobenzene. J Am Chem Soc 80:3528–3531

    Article  CAS  Google Scholar 

  17. Borisenko V, Woolley GA (2005) Reversibility of conformational switching in light-sensitive peptides. J Photochem Photobiol A Chem 173(1):21–28

    Article  CAS  Google Scholar 

  18. Banghart MR et al (2009) Photochromic blockers of voltage-gated potassium channels. Angew Chem Int Ed Engl 48(48):9097–9101

    Article  PubMed  CAS  Google Scholar 

  19. Blaustein RO et al (2000) Tethered blockers as molecular ‘tape measures’ for a voltage-gated K+  channel. Nat Struct Biol 7(4):309–311

    Article  PubMed  CAS  Google Scholar 

  20. Blaustein RO (2002) Kinetics of tethering quaternary ammonium compounds to K(+) channels. J Gen Physiol 120(2):203–216

    Article  PubMed  CAS  Google Scholar 

  21. Sawicki E (1957) Physical properties of aminoazobenzene dyes. VIII. Absorption spectra in acid solution. J Org Chem 22:1084–1088

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jessica Harvey for contributing to the synthesis of MAQ, Rudi Nunlist of the UC Berkeley Department of Chemistry NMR facility for assisting with the NMR experiments, and Enrique Chang, formerly at Till Photonics for coordinating customization of the Polychrome V used in these experiments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Banghart, M.R., Trauner, D. (2013). A 1H NMR Assay for Measuring the Photostationary States of Photoswitchable Ligands. In: Banghart, M. (eds) Chemical Neurobiology. Methods in Molecular Biology, vol 995. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-345-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-345-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-344-2

  • Online ISBN: 978-1-62703-345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics