Skip to main content

Stimuli-Responsive Peptide Nanostructures at the Fluid–Fluid Interface

  • Protocol
  • First Online:
Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 996))

Abstract

The self-organization of peptide-based nanostructures at a confined fluid–fluid interface, for example, the air–water or oil–water interface, is important in the context of stabilizing macroscopic soft-matter foams and emulsions. The unique ability to design interfacial nanostructures by controlling the subtle cooperativity that drives peptide self-assembly, and the ability to switch molecular cooperativity by facile triggers such as pH, opens new vistas for controlling macroscopic soft matter in industries as diverse as healthcare and industrial processing. Here we describe research aimed at developing new understanding into soft-matter formation and control, through variation of peptide sequence and bulk conditions. Macroscopic foaming and microfluidic emulsification studies prove particularly useful in visualizing and hence understanding the synergistic link between molecular design, mesoscopic interfacial properties, and bulk soft-matter stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koopmans RJ, Middelberg APJ (2009) Engineering materials from the bottom up—overview. Adv Chem Eng: Eng Aspects Self-Organ Mater 35:1–10

    CAS  Google Scholar 

  2. Koopmans RJ, Aggeli A (2010) Nanobiotechnology—quo vadis? Curr Opin Microbiol 13:327–334

    Article  PubMed  Google Scholar 

  3. Leon L, Logrippo P, Tu R (2010) Self-assembly of rationally designed peptides under two-dimensional confinement. Biophys J 99:2888–2895

    Article  PubMed  CAS  Google Scholar 

  4. Kwak B, Shin K, Seok S et al (2010) Side chain assisted nanotubular self-assembly of cyclic peptides at the air–water interface. Soft Matter 6:4701–4709

    Article  CAS  Google Scholar 

  5. Tanaka M, Ogura K, Abiko S et al (2008) Two-dimensional self-assembly of a designed amphiphilic peptide at air/water interface. Polymer J 40:1191–1194

    Article  CAS  Google Scholar 

  6. Lepere M, Chevallard C, Hernandez JF et al (2007) Multiscale surface self-assembly of an amyloid-like peptide. Langmuir 23:8150–8155

    Article  PubMed  CAS  Google Scholar 

  7. Zhao XB, Pan F, Lu JR (2009) Interfacial assembly of proteins and peptides: recent examples studied by neutron reflection. J R Soc Interface 6:S659–S670

    Article  PubMed  CAS  Google Scholar 

  8. Khurana E, DeVane RH, Kohlmeyer A et al (2008) Probing peptide nanotube self-assembly at a liquid–liquid interface with coarse-grained molecular dynamics. Nano Lett 8:3626–3630

    Article  PubMed  CAS  Google Scholar 

  9. Middelberg APJ, Radke CJ, Blanch HW (2000) Peptide interfacial adsorption is kinetically limited by the thermodynamic stability of self association. Proc Natl Acad Sci U S A 97:5054–5059

    Article  PubMed  CAS  Google Scholar 

  10. Fairman R, Chao HG, Mueller L et al (1995) Characterization of a new 4-chain coiled-coil—Influence of chain-length on stability. Protein Sci 4:1457–1469

    Article  PubMed  CAS  Google Scholar 

  11. Dexter AF, Malcolm AS, Middelberg APJ (2006) Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nat Mater 5:502–506

    Article  PubMed  CAS  Google Scholar 

  12. Malcolm AS, Dexter AF, Middelberg APJ (2006) Foaming properties of a peptide designed to form stimuli-responsive interfacial films. Soft Matter 2:1057–1066

    Article  CAS  Google Scholar 

  13. Middelberg APJ, He L, Dexter AF et al (2008) The interfacial structure and Young’s modulus of peptide films having switchable mechanical properties. J R Soc Interface 5:47–54

    Article  PubMed  CAS  Google Scholar 

  14. Malcolm AS, Dexter AF, Katakdhond JA et al (2009) Tuneable control of interfacial rheology and emulsion coalescence. Chemphyschem 10:778–781

    Article  PubMed  CAS  Google Scholar 

  15. Dexter AF, Middelberg APJ (2007) Switchable peptide surfactants with designed metal binding capacity. J Phys Chem C 111:10484–10492

    Article  CAS  Google Scholar 

  16. Zhao CX, Middelberg APJ (2011) Effects of fluid–fluid interfacial elasticity on droplet formation in microfluidic devices. AIChE J 57:1669–1677

    Google Scholar 

  17. Jones DB, Middelberg APJ (2002) Mechanical properties of interfacially adsorbed peptide networks. Langmuir 18:10357–10362

    Article  CAS  Google Scholar 

  18. Jones DB, Middelberg APJ (2002) Micromechanical testing of interfacial protein networks demonstrates ensemble behavior characteristic of a nanostructured biomaterial. Langmuir 18:5585–5591

    Article  CAS  Google Scholar 

  19. Jones DB, Middelberg APJ (2002) Direct determination of the mechanical properties of an interfacially adsorbed protein film. Chem Eng Sci 57:1711–1722

    Article  CAS  Google Scholar 

  20. Jones DB, Middelberg APJ (2003) Interfacial protein networks and their impact on droplet breakup. AIChE J 49:1533–1541

    Article  CAS  Google Scholar 

  21. Zhao CX, Middelberg APJ (2009) Microfluidic mass-transfer control for the simple formation of complex multiple emulsions. Angew Chem Int Ed 48:7208–7211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Australian Research Council (DP1093056 and DP1213683) supporting their studies into peptide self-assembly at two-dimensional interfaces. Dr Chun-Xia Zhao acknowledges support from the Australian Research Council in the form of an Australian Postdoctoral Fellow (DP110100394).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zhao, CX., Middelberg, A.P.J. (2013). Stimuli-Responsive Peptide Nanostructures at the Fluid–Fluid Interface. In: Gerrard, J. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 996. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-354-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-354-1_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-353-4

  • Online ISBN: 978-1-62703-354-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics