Skip to main content

LC-MS Spectra Processing

  • Protocol
  • First Online:
Mass Spectrometry Data Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1007))

Abstract

Peak extraction from raw data is the first step in LC-MS data analysis. The quality of this procedure is important since it affects the quality and accuracy of all subsequent analysis such as database searches and peak quantitation. The most important and most accurately measured physical entity provided by mass spectrometers is m/z values which need to be extracted by state of art algorithms and scrutinized thoroughly. The aim of this chapter is to provide a discussion of peak processing methods and furthermore discuss some of the yet unresolved or neglected issues. A few novel concepts are also proposed for analysis and visualization. The final section of this chapter provides a note on possible software for spectra processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  2. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  PubMed  CAS  Google Scholar 

  3. Fredriksson M, Petersson P, Jornten-Karlsson M, Axelsson BO, Bylund D (2007) An objective comparison of pre-processing methods for enhancement of liquid chromatography-mass spectrometry data. J Chromatogr A 1172:135–150

    Article  PubMed  CAS  Google Scholar 

  4. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1988–1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  5. Savitzky A, Golay JEM (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  6. Chatfield C (1989) The Analysis of Time Series: An Introduction, Sixth Edition. Chapman & Hall/CRC Texts in Statistical Science, Chris Chatfield

    Google Scholar 

  7. Eilers PH (2003) A perfect smoother. Anal Chem 75:3631–3636

    Article  PubMed  CAS  Google Scholar 

  8. Kast J, Gentzel M, Wilm M, Richardson K (2003) Noise filtering techniques for electrospray quadrupole time of flight mass spectra. J Am Soc Mass Spectrom 14:766–776

    Article  PubMed  CAS  Google Scholar 

  9. Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R (2005) Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21:1764–1775

    Article  PubMed  CAS  Google Scholar 

  10. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  PubMed  CAS  Google Scholar 

  11. Vivo-Truyols G, Schoenmakers PJ (2006) Automatic selection of optimal Savitzky-Golay smoothing. Anal Chem 78:4598–4608

    Article  PubMed  CAS  Google Scholar 

  12. Bylund D (2001) Chemometrics tools for enhanced performance in liquid chromatography-mass spectrometry. Uppsala University, Sweden, Uppsala

    Google Scholar 

  13. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  14. Sheppard WF (1898) On the geometrical treatment of the ‘normal curve’ of statistics, with special reference to correlation and to the theory of error. Proc Roy Soc London. 62:171–173

    Google Scholar 

  15. Schlosser A, Volkmer-Engert R (2003) Volatile polydimethylcyclosiloxanes in the ambient laboratory air identified as source of extreme background signals in nanoelectrospray mass spectrometry. J Mass Spectrom 38:523–525

    Article  PubMed  CAS  Google Scholar 

  16. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021

    Article  PubMed  CAS  Google Scholar 

  17. Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4:2338–2347

    Article  PubMed  CAS  Google Scholar 

  18. Cox J, Mann M (2009) Computational principles of determining and improving mass precision and accuracy for proteome measurements in an Orbitrap. J Am Soc Mass Spectrom 20:1477–1485

    Article  PubMed  CAS  Google Scholar 

  19. Wehofsky M, Hoffmann R (2002) Automated deconvolution and deisotoping of electrospray mass spectra. J Mass Spectrom 37:223–229

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Z, Marshall AG (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9:225–233

    Article  PubMed  CAS  Google Scholar 

  21. Senko MW, Beu SC, McLafferty FW (1995) Automated assignment of charge states from resolved isotopic peaks for multiply charged ions. J Am Soc Mass Spectrom 6:52–56

    Article  CAS  Google Scholar 

  22. Kaur P, O’Connor PB (2006) Algorithms for automatic interpretation of high resolution mass spectra. J Am Soc Mass Spectrom 17:459–468

    Article  PubMed  CAS  Google Scholar 

  23. Senko MW, Beru SC, McLafferty FW (1995) Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions. J Am Soc Mass Spectrom 6:229–233

    Article  CAS  Google Scholar 

  24. Rodriguez-Suarez E, Gubb E, Alzueta IF, Falcon-Perez JM, Amorim A, Elortza F, Matthiesen R (2010) Virtual expert mass spectrometrist: iTRAQ tool for database-dependent search, quantitation and result storage. Proteomics 10:1545–1556

    Article  PubMed  CAS  Google Scholar 

  25. Mancuso F, Bunkenborg J, Wierer M, Molina H (2012) Data extraction from proteomics raw data: An evaluation of nine tandem MS tools using a large Orbitrap data set. J Proteomics 75(17):5293–5303

    Article  PubMed  CAS  Google Scholar 

  26. Levnberg K (1944) A method for the solution of Certain Non-linear Problems in Least Squares. Q Appl Math 2:164–168

    Google Scholar 

  27. Brereton RG (2003) Data analysis for the laboratory and chemical plants. John Wiley & Sons, Bristol, UK

    Google Scholar 

  28. Wehofsky M, Hoffmann R, Hubert M, Spengler B (2001) Isotopic deconvolution of matrix-assisted laser desorption/ionization mass spectra for substances-class specific analysis of complex samples. Eur J Mass Spectrom 7:39–46

    Article  CAS  Google Scholar 

  29. Meija J, Caruso JA (2004) Deconvolution of isobaric interferences in mass spectra. J Am Soc Mass Spectrom 15:654–658

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R.M. is supported by Fundação para a Ciência e a Tecnologia (FCT), program CIENCIA 2007. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT. R.M. is further supported by FCT grants (PTDC/QUI-BIQ/099457/2008 and PTDC/EIA-EIA/099458/2008).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matthiesen, R. (2013). LC-MS Spectra Processing. In: Matthiesen, R. (eds) Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology, vol 1007. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-392-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-392-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-391-6

  • Online ISBN: 978-1-62703-392-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics