Skip to main content

Use of Ancestral Haplotypes in Genome-Wide Association Studies

  • Protocol
  • First Online:
Genome-Wide Association Studies and Genomic Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1019))

Abstract

We herein present a haplotype-based method to perform genome-wide association studies. The method relies on hidden Markov models to describe haplotypes from a population as a mosaic of a set of ancestral haplotypes. For a given position in the genome, haplotypes deriving from the same ancestral haplotype are also likely to carry the same risk alleles. Therefore, the model can be used in several applications such as haplotype reconstruction, imputation, association studies or genomic predictions. We illustrate then the model with two applications: the fine-mapping of a QTL affecting live weight in cattle and association studies in a stratified cattle population. Both applications show the potential of the method and the high linkage disequilibrium between ancestral haplotypes and causative variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broman KW (2005) The genomes of recombinant inbred lines. Genetics 169:1133–1146

    Article  PubMed  CAS  Google Scholar 

  2. Rabiner LR (1989) A tutorial on hidden Markov chains and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  3. Scheet P, Stephens M (2006) A fast and flexible statistical model for a large-scale population genotype data applications to inferring missing genotypes and haplotype phase. Am J Hum Genet 78:629–644

    Article  PubMed  CAS  Google Scholar 

  4. Druet T, Georges M (2010) A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184:789–798

    Article  PubMed  CAS  Google Scholar 

  5. Sun S, Greenwood CMT, Neal RM (2007) Haplotype inference using a Bayesian hidden Markov model. Genet Epidemiol 31:937–948

    Article  PubMed  Google Scholar 

  6. de Roos APW, Schrooten C, Druet T (2011) Genomic breeding value estimation using genetic markers, inferred ancestral haplotypes, and the genomic relationship matrix. J Dairy Sci 94:4708–4714

    Article  PubMed  Google Scholar 

  7. Kover PX, Valdar W, Trakalo N, Scarcelli I, Ehrenreich M, Purugganan MD et al (2009) A multiparent advanced generation inter-cross to finemap quantitative traits in Arabidopsis thaliana. PLoS Genet 5(7):e1000551

    Article  PubMed  Google Scholar 

  8. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. PNAS 97(23):12649–12654

    Article  PubMed  Google Scholar 

  9. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  PubMed  CAS  Google Scholar 

  10. Su SY, Balding DJ, Coin LJ (2008) Disease association tests by inferring ancestral haplotypes using a hidden Markov model. Bioinformatics 24:972–978

    Article  PubMed  CAS  Google Scholar 

  11. Karim L, Takeda H, Lin L, Druet T, Ariaz JAC, Baurain D et al (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43:405–413

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Z, Guillaume F, Sartelet A, Charlier C, Georges M, Farnir F, Druet T (2012) Ancestral haplotype-based association mapping with generalized linear mixed models accounting for stratification. Bioinformatics 28(19):2467–2473. doi:10.1093/bioinformatics/bts348

    Google Scholar 

  13. Durkin K, Coppieters W, Drögmüller C, Ahariz N, Cambisano N, Druet T et al (2012) Serial translocation via circular intermediates underlies colorsidedness in cattle. Nature 482:81–84

    Article  PubMed  CAS  Google Scholar 

  14. Sartelet A, Druet T, Michaux C, Fasquelle C, Géron S, Tamma N (2012) A splice site variant in the bovine RNF11 gene compromises growth and regulation of the inflammatory response. PLoS Genet 8(3):e1002581

    Article  PubMed  CAS  Google Scholar 

  15. Sartelet A, Stauber T, Coppieters W, Fasquelle C, Druet T, Zhang Z (2012) A missense mutation in the ClC-7 chloride channel causes hamartomas with osteopetrosis in cattle. Submitted

    Google Scholar 

  16. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing data inference for whole-genome association studies by use of localized-haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  PubMed  CAS  Google Scholar 

  17. Yu J et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  18. Tzeng JU, Zhang D (2007) Haplotype-based association analysis via variance-components score test. Am J Hum Genet 81:927–938

    Article  PubMed  CAS  Google Scholar 

  19. Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M (2012) Genetic variants in REC8, RNF212 and PRDM9 influence male recombination in cattle. PLoS Genet 8(7):e1002854. doi:10.1371/journal.pgen.1002854

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Druet, T., Farnir, F. (2013). Use of Ancestral Haplotypes in Genome-Wide Association Studies. In: Gondro, C., van der Werf, J., Hayes, B. (eds) Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, vol 1019. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-447-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-447-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-446-3

  • Online ISBN: 978-1-62703-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics