Skip to main content

High-Throughput Screening for Protein Tyrosine Phosphatase Activity Modulators

  • Protocol
  • First Online:
Phosphatase Modulators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1053))

Abstract

Reversible phosphorylation of proteins, principally on serine, threonine, or tyrosine residues, is central to the regulation of most aspects of eukaryotic cell function. Dysregulation of protein kinases and protein phosphatases is linked to numerous human diseases. Consequently, many efforts have been made to target these enzymes with small molecules in order to develop new therapeutic agents. While protein kinase inhibitors have been successfully brought to the market, the development of specific protein phosphatase inhibitors is still in its infancy. The largest and most diverse protein phosphatase superfamily in humans is comprised by the protein tyrosine phosphatases, a group of over 100 enzymes. Here, we describe high-throughput screening methods to search for protein tyrosine phosphatase activity modulators. We illustrate the implementation of relatively simple phosphatase assays, using generic absorbance- or fluorescence-based substrates, in 384- or 1536-well microtiter plates. We discuss steps to optimize HTS assay quality and performance, and describe several PTP screening methods on the basis of previously performed successful HTS campaigns. Finally, we discuss how to confirm, follow up, and prioritize hit compounds, and point out a number of common pitfalls that are encountered in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77:1311–1315

    Article  PubMed  CAS  Google Scholar 

  2. Hunter T (1998) The role of tyrosine phosphorylation in cell growth and disease. Harvey Lect 94:81–119

    PubMed  Google Scholar 

  3. Hunter T (2000) Signaling–2000 and beyond. Cell 100:113–127

    Article  PubMed  CAS  Google Scholar 

  4. Larsen M, Tremblay ML, Yamada KM (2003) Phosphatases in cell-matrix adhesion and migration. Nat Rev Mol Cell Biol 4:700–711

    Article  PubMed  CAS  Google Scholar 

  5. Alonso A, Sasin J, Bottini N et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  6. Mustelin T, Vang T, Bottini N (2005) Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 5:43–57

    Article  PubMed  CAS  Google Scholar 

  7. Halle M, Tremblay ML, Meng TC (2007) Protein tyrosine phosphatases: emerging regulators of apoptosis. Cell Cycle 6:2773–2781

    Article  PubMed  CAS  Google Scholar 

  8. Pao LI, Badour K, Siminovitch KA et al (2007) Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523

    Article  PubMed  CAS  Google Scholar 

  9. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21:140–146

    Article  PubMed  CAS  Google Scholar 

  10. Rhee I, Veillette A (2012) Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 13:439–447

    Article  PubMed  CAS  Google Scholar 

  11. Cohen P (2002) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315

    Article  PubMed  CAS  Google Scholar 

  12. Tautz L, Pellecchia M, Mustelin T (2006) Targeting the PTPome in human disease. Expert Opin Ther Targets 10:157–177

    Article  PubMed  CAS  Google Scholar 

  13. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  PubMed  CAS  Google Scholar 

  14. Vang T, Miletic AV, Arimura Y et al (2008) Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 26:29–55

    Article  PubMed  CAS  Google Scholar 

  15. Julien SG, Dube N, Hardy S et al (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11:35–49

    Article  PubMed  CAS  Google Scholar 

  16. Bialy L, Waldmann H (2005) Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew Chem Int Ed Engl 44:3814–3839

    Article  PubMed  CAS  Google Scholar 

  17. Vintonyak VV, Antonchick AP, Rauh D et al (2009) The therapeutic potential of phosphatase inhibitors. Curr Opin Chem Biol 13:272–283

    Article  PubMed  CAS  Google Scholar 

  18. Barr AJ (2010) Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem 2:1563–1576

    Article  PubMed  CAS  Google Scholar 

  19. Sobhia ME, Paul S, Shinde R et al (2012) Protein tyrosine phosphatase inhibitors: a patent review (2002–2011). Expert Opin Ther Pat 22:125–153

    Article  PubMed  CAS  Google Scholar 

  20. He R, Zeng LF, He Y et al (2013) Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 280:731–750

    Google Scholar 

  21. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588

    Article  PubMed  CAS  Google Scholar 

  22. Kool J, Lingeman H, Niessen W et al (2010) High throughput screening methodologies classified for major drug target classes according to target signaling pathways. Comb Chem High Throughput Screen 13:548–561

    Article  PubMed  CAS  Google Scholar 

  23. Tautz L, Mustelin T (2007) Strategies for developing protein tyrosine phosphatase inhibitors. Methods 42:250–260

    Article  PubMed  CAS  Google Scholar 

  24. Montalibet J, Skorey KI, Kennedy BP (2005) Protein tyrosine phosphatase: enzymatic assays. Methods 35:2–8

    Article  PubMed  CAS  Google Scholar 

  25. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

  26. Feng BY, Shoichet BK (2006) A detergent-based assay for the detection of promiscuous inhibitors. Nat Protoc 1:550–553

    Article  PubMed  CAS  Google Scholar 

  27. Sergienko E, Xu J, Liu WH et al (2012) Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol 7:367–377

    Article  PubMed  CAS  Google Scholar 

  28. Bobkova EV, Liu WH, Colayco S et al (2011) Inhibition of the hematopoietic protein tyrosine phosphatase by phenoxyacetic acids. ACS Med Chem Lett 2:113–118

    Article  PubMed  CAS  Google Scholar 

  29. Goebel-Goody SM, Baum M, Paspalas CD et al (2012) Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 64:65–87

    Article  PubMed  CAS  Google Scholar 

  30. Vang T, Congia M, Macis MD et al (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37:1317–1319

    Article  PubMed  CAS  Google Scholar 

  31. Xie Y, Liu Y, Gong G et al (2008) Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg Med Chem Lett 18:2840–2844

    Article  PubMed  CAS  Google Scholar 

  32. Vang T, Liu WH, Delacroix L et al (2012) LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol 8:437–446

    Article  PubMed  CAS  Google Scholar 

  33. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Article  PubMed  CAS  Google Scholar 

  34. Cummings MD, Farnum MA, Nelen MI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen 11:854–863

    Article  PubMed  CAS  Google Scholar 

  35. Bova MP, Mattson MN, Vasile S et al (2004) The oxidative mechanism of action of ortho-quinone inhibitors of protein-tyrosine phosphatase alpha is mediated by hydrogen peroxide. Arch Biochem Biophys 429:30–41

    Article  PubMed  CAS  Google Scholar 

  36. Johnston PA, Foster CA, Tierno MB et al (2009) Cdc25B dual-specificity phosphatase inhibitors identified in a high-throughput screen of the NIH compound library. Assay Drug Dev Technol 7:250–265

    Article  PubMed  CAS  Google Scholar 

  37. Tautz L, Bruckner S, Sareth S et al (2005) Inhibition of Yersinia tyrosine phosphatase by furanyl salicylate compounds. J Biol Chem 280:9400–9408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Roadmap Initiative grants U54HG003916 and U54HG005033 (to CPCCG), and NIH grants R03MH095532, R03MH084230, and R21CA132121 (to L.T.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tautz, L., Sergienko, E.A. (2013). High-Throughput Screening for Protein Tyrosine Phosphatase Activity Modulators. In: Millán, J. (eds) Phosphatase Modulators. Methods in Molecular Biology, vol 1053. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-562-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-562-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-561-3

  • Online ISBN: 978-1-62703-562-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics