Skip to main content

Activation Tagging Using the Maize En-I Transposon System for the Identification of Abiotic Stress Resistance Genes in Arabidopsis

  • Protocol
  • First Online:
Plant Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1057))

Abstract

Activation tagging is a high-throughput method of overexpressing genes by using an enhancer present in insertion sequences that are randomly inserted in the genome to enhance the expression of adjacent genes. Gain-of-function approaches are advantageous to identify the functions of redundant genes that are not identifiable by knockout (KO) mutations, and for identification of phenotypes with small effects, which are enhanced by activation. An activation tag (ATag) library of 800 lines was generated in Arabidopsis ecotype Columbia using the En-I (Spm) transposon system. The ATag lines were used in a forward genetics strategy to identify novel genes that confer resistance/tolerance to abiotic stresses. The ATag lines were screened for altered drought and salt stress response phenotypes using quantitative assays for biomass accumulation under stress, revealing a number of resistant and sensitive ATag mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira A (2001) Genetic dissection of plant stress responses. In: Bucner P, Hawkesford MJ (eds) Molecular analysis of plant adaptation to the environment. Kluwer Academic, New York, pp 17–42

    Google Scholar 

  2. Papdi C et al (2010) Genetic screens to identify plant stress genes. Methods Mol Biol 639:121–139

    Article  PubMed  CAS  Google Scholar 

  3. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  4. Bounchè N, Bounchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4:111–117

    Article  Google Scholar 

  5. Marsch-Martinez N et al (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    Article  PubMed  CAS  Google Scholar 

  6. Hirschi K (2003) Insertional mutants: a foundation for assessing gene function. Trends Plant Sci 8:205–207

    Article  PubMed  CAS  Google Scholar 

  7. Nakazawa M et al (2003) Activation tagging, a novel tool to dissect the functions of a gene family. Plant J 34:741–750

    Article  PubMed  CAS  Google Scholar 

  8. Weigel D et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  9. Tani H et al (2004) Activation tagging in plants: a tool for gene discovery. Funct Integr Genomics 4:258–266

    Article  PubMed  CAS  Google Scholar 

  10. Chalfun-Junior A et al (2003) Low frequency of T-DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35S enhancer sequences. FEBS Lett 555:459–463

    Article  PubMed  CAS  Google Scholar 

  11. Scheinder A et al (2005) A transposon- based activation – tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Lett 579:4622–4628

    Article  Google Scholar 

  12. Tissier A et al (1999) Multiple independent defective suppressor – mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852

    PubMed  CAS  Google Scholar 

  13. Kardailsky I et al (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  14. Borevitz JO et al (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    PubMed  CAS  Google Scholar 

  15. Karaba A et al (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  PubMed  CAS  Google Scholar 

  16. Ito T, Meyerowitz EM (2000) Overexpression of a gene encoding a cytochrome P450 CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12:1541–1550

    PubMed  CAS  Google Scholar 

  17. Marsch-Martinez N et al (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol 62:825–843

    Article  PubMed  CAS  Google Scholar 

  18. Aharoni A et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  PubMed  CAS  Google Scholar 

  19. Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. FEBS Lett 579:4622–4628

    Google Scholar 

  20. Chini A et al (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    Article  PubMed  CAS  Google Scholar 

  21. Yu H et al (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  PubMed  CAS  Google Scholar 

  22. Aboul-Soud MA et al (2009) Activation tagging of ADR2 conveys a spreading lesion phenotype and resistance to biotrophic pathogens. New Phytol 183:1163–1175

    Article  PubMed  CAS  Google Scholar 

  23. Thompson CJ et al (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  24. O'Keefe DP et al (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol 105:473–482

    PubMed  Google Scholar 

  25. Harb A, Pereira A (2011) Screening Arabidopsis genotypes for drought stress resistance. Methods Mol Biol 678:191–198

    Article  PubMed  CAS  Google Scholar 

  26. Pereira A, Aarts M (1998) Transposon tagging with the En-I system. In: Martínez-Zapater JM, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, NJ, pp 329–338

    Chapter  Google Scholar 

  27. Liu YG et al (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  28. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  29. Tsugeki R, Kochieva EZ, Fedoroff NV (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J 10:479–489

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Harb, A., Pereira, A. (2013). Activation Tagging Using the Maize En-I Transposon System for the Identification of Abiotic Stress Resistance Genes in Arabidopsis. In: Peterson, T. (eds) Plant Transposable Elements. Methods in Molecular Biology, vol 1057. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-568-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-568-2_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-567-5

  • Online ISBN: 978-1-62703-568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics