Skip to main content

Generation and Characterization of Arabidopsis T-DNA Insertion Mutants

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Transfer DNA (T-DNA) insertion mutants are often used in forward and reverse genetics to reveal the molecular mechanisms of a particular biological process in plants. To generate T-DNA insertion mutants, T-DNA must be inserted randomly in the genome through transformation mediated by Agrobacterium tumefaciens. During generation of a T-DNA insertion mutant, Agrobacterium competent cells are first prepared and plasmids containing the T-DNA introduced into Agrobacterium cells. Agrobacterium containing T-DNA vectors are then used to transform T-DNA into Arabidopsis. After screening and identifying T-DNA insertion mutants with interesting phenotypes, genomic DNA is extracted from the mutants and used to isolate the T-DNA flanking sequences. To finally determine the mutated genes causing the specific phenotype in the T-DNA insertion mutants, cosegregation analysis and complementation or recapitulation analysis are needed. In this chapter, we describe detailed protocols for generation and characterization of T-DNA insertion mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    PubMed  CAS  Google Scholar 

  2. Wilson RN, Somerville CR (1995) Phenotypic suppression of the gibberellin-insensitive mutant (gai) of Arabidopsis. Plant Physiol 108:495–502

    PubMed  CAS  Google Scholar 

  3. Weigel D et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  4. Engineer CB et al (2005) Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC Plant Biol 5:9

    Article  PubMed  Google Scholar 

  5. Radhamony RN, Prasad AM, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol 8:82–106

    CAS  Google Scholar 

  6. Mattanovich D et al (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res 17:6747

    Article  PubMed  CAS  Google Scholar 

  7. Shen WJ, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res 17:8385

    Article  PubMed  CAS  Google Scholar 

  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  9. Clough SJ (2005) Floral dip: Agrobacterium-mediated germ line transformation. Methods Mol Biol 286:91–102

    PubMed  CAS  Google Scholar 

  10. Bent AF (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103

    PubMed  CAS  Google Scholar 

  11. Zhang X et al (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

  12. Clarke JD (2009) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc 2009, pdb prot. 5177. doi:10.1101/pdb.prot5177

  13. Liu YG, Huang N (1998) Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep 16:175–181

    Article  CAS  Google Scholar 

  14. Liu YG et al (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  15. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR-automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  16. Qin G et al (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693–2704

    Article  PubMed  CAS  Google Scholar 

  17. Qin G et al (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17:249–263

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Qu, LJ., Qin, G. (2014). Generation and Characterization of Arabidopsis T-DNA Insertion Mutants. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics