Skip to main content

HAT: A Novel Statistical Approach to Discover Functional Regions in the Genome

  • Protocol
  • First Online:
Tiling Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1067))

  • 1281 Accesses

Abstract

Tiling arrays are useful for exploring local functions of regions of the genome in an unbiased fashion. The exact determination of those genomic regions based on tiling-array data, e.g., generated by means of hybridization with immunopreciptated DNA-fragments to the arrays is a challenge. Many different statistical methodologies have been developed to find biological relevant regions-of-interest (ROI) by using the quantitative signal intensity of each probe. We previously developed a method called Hypergeometric Analysis of Tiling arrays (HAT) for the analysis of tiling-array data, but it is developed such that it can also be used to study data derived by genome-wide deep sequencing approaches. Here we applied HAT to analyze two publicly available tiling-array data sets. After the detection of statistically significant ROI, these are often used in additional analysis for hypothesis testing. We therefore discuss, by using the results of the tiling-array experiment, pathway and motif analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Good SR, Thieu VT, Mathur AN, Yu Q, Stritesky GL, Yeh N et al (2009) Temporal induction pattern of STAT4 target genes defines potential for Th1 lineage-specific programming. J Immunol 183:3839–3847

    Article  PubMed  CAS  Google Scholar 

  2. Beekman R, Valkhof M, Erkeland SJ, Taskesen E, Rockova V, Peeters JK et al (2011) Retroviral integration mutagenesis in mice and comparative analysis in human AML identify reduced PTP4A3 expression as a prognostic indicator. PLoS One 6:e26537

    Article  PubMed  CAS  Google Scholar 

  3. Crawford GE, Davis S, Scacheri PC, Renaud G, Halawi MJ, Erdos MR et al (2006) DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods 3:503–509

    Article  PubMed  CAS  Google Scholar 

  4. Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    Article  PubMed  CAS  Google Scholar 

  5. Taskesen E, Beekman R, de Ridder J, Wouters BJ, Peeters JK, Touw IP et al (2010) HAT: hypergeometric analysis of tiling-arrays with application to promoter-GeneChip data. BMC Bioinformatics 11:275

    Article  PubMed  Google Scholar 

  6. Munch K, Gardner PP, Arctander P, Krogh A (2006) A hidden Markov model approach for determining expression from genomic tiling micro arrays. BMC Bioinformatics 7:239

    Article  PubMed  Google Scholar 

  7. Yu WH, Hovik H, Chen T (2010) A hidden Markov support vector machine framework incorporating profile geometry learning for identifying microbial RNA in tiling array data. Bioinformatics 26:1423–1430

    Article  PubMed  CAS  Google Scholar 

  8. Knott SR, Viggiani CJ, Aparicio OM, Tavare S (2009) Strategies for analyzing highly enriched IP-chip datasets. BMC Bioinformatics 10:305

    Article  PubMed  Google Scholar 

  9. Kuan PF, Chun H, Keles S (2008) CMARRT: a tool for the analysis of ChIP-chip data from tiling arrays by incorporating the correlation structure. Pac Symp Biocomput 515–526

    Google Scholar 

  10. Zhang Y (2008) Poisson approximation for significance in genome-wide ChIP-chip tiling arrays. Bioinformatics 24:2825–2831

    Article  PubMed  CAS  Google Scholar 

  11. Wu H, Ji H (2012) JAMIE: a software tool for jointly analyzing multiple ChIP-chip experiments. Methods Mol Biol 802:363–375

    Article  PubMed  Google Scholar 

  12. Mo Q, Liang F (2010) A hidden Ising model for ChIP-chip data analysis. Bioinformatics 26:777–783

    Article  PubMed  CAS  Google Scholar 

  13. Mo Q, Liang F (2010) Bayesian modeling of ChIP-chip data through a high-order Ising model. Biometrics 66:1284–1294

    Article  PubMed  CAS  Google Scholar 

  14. Karpikov A, Rozowsky J, Gerstein M (2011) Tiling array data analysis: a multiscale approach using wavelets. BMC Bioinformatics 12:57

    Article  PubMed  Google Scholar 

  15. Otto C, Reiche K, Hackermuller J (2012) Detection of differentially expressed segments in tiling array data. Bioinformatics 28:1471–1479

    Article  PubMed  CAS  Google Scholar 

  16. Lan X, Bonneville R, Apostolos J, Wu W, Jin VX (2011) W-ChIPeaks: a comprehensive web application tool for processing ChIP-chip and ChIP-seq data. Bioinformatics 27:428–430

    Article  PubMed  CAS  Google Scholar 

  17. Kechris KJ, Biehs B, Kornberg TB (2010) Generalizing moving averages for tiling arrays using combined p-value statistics. Stat Appl Genet Mol Biol 9:Article29

    Google Scholar 

  18. Zacher B, Kuan PF, Tresch A (2010) Starr: simple tiling ARRay analysis of Affymetrix ChIP-chip data. BMC Bioinformatics 11:194

    Article  PubMed  Google Scholar 

  19. Droit A, Cheung C, Gottardo R (2010) rMAT–an R/Bioconductor package for analyzing ChIP-chip experiments. Bioinformatics 26:678–679

    Article  PubMed  CAS  Google Scholar 

  20. Judy JT, Ji H (2009) TileProbe: modeling tiling array probe effects using publicly available data. Bioinformatics 25:2369–2375

    Article  PubMed  CAS  Google Scholar 

  21. Cesaroni M, Cittaro D, Brozzi A, Pelicci PG, Luzi L (2008) CARPET: a web-based package for the analysis of ChIP-chip and expression tiling data. Bioinformatics 24:2918–2920

    Article  PubMed  CAS  Google Scholar 

  22. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci USA 103:12457–12462

    Article  PubMed  CAS  Google Scholar 

  23. Kim CK, Kikuchi S, Hahn JH, Park SC, Kim YH, Lee BW (2010) Computational identification of anthocyanin-specific transcription factors using a rice microarray and maximum boundary range algorithm. Evol Bioinform Online 6:133–141

    Article  PubMed  CAS  Google Scholar 

  24. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  25. Lieberman LA, Banica M, Reiner SL, Hunter CA (2004) STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. J Immunol 172:457–463

    PubMed  CAS  Google Scholar 

  26. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A (2002) Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297:2063–2066

    Article  PubMed  CAS  Google Scholar 

  27. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E (2003) MATCH: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31:3576–3579

    Article  PubMed  CAS  Google Scholar 

  28. Kel A, Voss N, Jauregui R, Kel-Margoulis O, Wingender E (2006) Beyond microarrays: find key transcription factors controlling signal transduction pathways. BMC Bioinformatics 7(Suppl 2):S13

    Article  PubMed  Google Scholar 

  29. Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7:105–117

    Article  PubMed  CAS  Google Scholar 

  30. Friedman AD (2007) Transcriptional control of granulocyte and monocyte development. Oncogene 26:6816–6828

    Article  PubMed  CAS  Google Scholar 

  31. Taskesen E, Bullinger L, Corbacioglu A, Sanders MA, Erpelinck CA, Wouters BJ et al (2011) Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117:2469–2475

    Article  PubMed  CAS  Google Scholar 

  32. van Waalwijk B, van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ et al (2003) Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 4:31–40

    Article  Google Scholar 

  33. de Bruijn MF, Speck NA (2004) Core-binding factors in hematopoiesis and immune function. Oncogene 23:4238–4248

    Article  PubMed  Google Scholar 

  34. Rabault B, Ghysdael J (1994) Calcium-induced phosphorylation of ETS1 inhibits its specific DNA binding activity. J Biol Chem 269:28143–28151

    PubMed  CAS  Google Scholar 

  35. Tenen DG, Hromas R, Licht JD, Zhang DE (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90:489–519

    PubMed  CAS  Google Scholar 

  36. Grall FT, Prall WC, Wei W, Gu X, Cho JY, Choy BK et al (2005) The Ets transcription factor ESE-1 mediates induction of the COX-2 gene by LPS in monocytes. FEBS J 272:1676–1687

    Article  PubMed  CAS  Google Scholar 

  37. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  PubMed  CAS  Google Scholar 

  38. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  39. Viswanathan GA, Seto J, Patil S, Nudelman G, Sealfon SC (2008) Getting started in biological pathway construction and analysis. PLoS Comput Biol 4:e16

    Article  PubMed  Google Scholar 

  40. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank Claudia Erpelinck-Verschueren for technical assistance in the preparation of the CEBPA C-terminal mutant samples.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Taskesen, E., Wouters, B., Delwel, R. (2013). HAT: A Novel Statistical Approach to Discover Functional Regions in the Genome. In: Lee, TL., Shui Luk, A. (eds) Tiling Arrays. Methods in Molecular Biology, vol 1067. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-607-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-607-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-606-1

  • Online ISBN: 978-1-62703-607-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics