Skip to main content

Fluorescence Cross-Correlation Spectroscopy (FCCS) in Living Cells

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Fluorescence cross-correlation spectroscopy (FCCS) is a single-molecule sensitive technique to quantitatively study interactions among fluorescently tagged biomolecules. Besides the initial implementation as dual-color FCCS (DC-FCCS), FCCS has several powerful derivatives, including single-wavelength FCCS (SW-FCCS), two-photon FCCS (TP-FCCS), and pulsed interleaved excitation FCCS (PIE-FCCS). However, to apply FCCS successfully, one needs to be familiar with procedures ranging from fluorescent labeling, instrumentation setup and alignment, sample preparation, and data analysis. Here, we describe the procedures to apply FCCS in various biological samples ranging from live cells to in vivo measurements, with the focus on DC-FCCS and SW-FCCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meseth U, Wohland T, Rigler R et al (1999) Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631

    Article  PubMed  CAS  Google Scholar 

  2. Erickson M, Moon D, Yue D (2003) DsRed as a potential FRET partner with CFP and GFP. Biophys J 85(1):599–611

    Google Scholar 

  3. Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. Chemphyschem 5(4):549–551

    Article  PubMed  CAS  Google Scholar 

  4. Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2(11):2842–2856

    Article  PubMed  CAS  Google Scholar 

  5. Rička J, Binkert T (1989) Direct measurement of a distinct correlation function by fluorescence cross correlation. Phys Rev A 39(5):2646–2652

    Article  Google Scholar 

  6. Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886

    Article  PubMed  CAS  Google Scholar 

  7. Tudor C, Feige JN, Pingali H et al (2007) Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. J Biol Chem 282(7):4417–4426

    Article  PubMed  CAS  Google Scholar 

  8. Weidemann T, Worch R, Kurgonaite K et al (2011) Single cell analysis of ligand binding and complex formation of interleukin-4 receptor subunits. Biophys J 101(10):2360–2369

    Article  PubMed  CAS  Google Scholar 

  9. Worch R, Bokel C, Hofinger S et al (2010) Focus on composition and interaction potential of single-pass transmembrane domains. Proteomics 10(23):4196–4208

    Article  PubMed  CAS  Google Scholar 

  10. Liu P, Sudhaharan T, Koh RM et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698

    Article  PubMed  CAS  Google Scholar 

  11. Ma X, Ahmed S, Wohland T (2011) EGFR activation monitored by SW-FCCS in live cells. Front Biosci (Elite Ed) 3:22–32

    Article  Google Scholar 

  12. Hwang LC, Wohland T (2005) Single wavelength excitation fluorescence cross-correlation spectroscopy with spectrally similar fluorophores: resolution for binding studies. J Chem Phys 122(11):114708

    Article  PubMed  Google Scholar 

  13. Swift JL, Burger MC, Massotte D et al (2007) Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor. Anal Chem 79(17):6783–6791

    Article  PubMed  CAS  Google Scholar 

  14. Dittrich PS, Schwille P (2001) Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl Phys B-Lasers O 73(8):829–837

    Article  CAS  Google Scholar 

  15. Berland K, Shen GQ (2003) Excitation saturation in two-photon fluorescence correlation spectroscopy. Appl Optics 42(27):5566–5576

    Article  Google Scholar 

  16. Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49(1):1–13

    Article  PubMed  CAS  Google Scholar 

  17. Thews E, Gerken M, Eckert R et al (2005) Cross talk free fluorescence cross correlation spectroscopy in live cells. Biophys J 89(3):2069–2076

    Article  PubMed  CAS  Google Scholar 

  18. Lamb DC, Muller BK, Brauchle C (2005) Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting. Curr Pharm Biotechnol 6(5):405–414

    Article  PubMed  CAS  Google Scholar 

  19. Müller BK, Zaychikov E, Brauchle C et al (2005) Pulsed interleaved excitation. Biophys J 89(5):3508–3522

    Article  PubMed  Google Scholar 

  20. Betaneli V, Petrov EP, Schwille P (2012) The role of lipids in VDAC oligomerization. Biophys J 102(3):523–531

    Article  PubMed  CAS  Google Scholar 

  21. Shi XK, Foo YH, Sudhaharan T et al (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97(2):678–686

    Article  PubMed  CAS  Google Scholar 

  22. Shi XK, Teo LS, Pan XT et al (2009) Probing events with single molecule sensitivity in Zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dynam 238(12):3156–3167

    Article  CAS  Google Scholar 

  23. Hotzer B, Medintz IL, Hildebrandt N (2012) Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small 8(15):2297–2326

    Article  PubMed  Google Scholar 

  24. Doi N, Takashima H, Kinjo M et al (2002) Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res 12(3):487–492

    PubMed  CAS  Google Scholar 

  25. Wu CY, Huang CK, Chung CY et al (2011) Probing the binding kinetics of proinflammatory cytokine-antibody interactions using dual color fluorescence cross correlation spectroscopy. Analyst 136(10):2111–2118

    Article  PubMed  CAS  Google Scholar 

  26. Hansen K, Ruttekolk IR, Glauner H et al (2009) The in vitro biological activity of the HLA-DR-binding clinical IgG4 antibody 1D09C3 is a consequence of the disruption of cell aggregates and can be abrogated by Fab arm exchange. Mol Immunol 46(16):3269–3277

    Article  PubMed  CAS  Google Scholar 

  27. Ruan Q, Tetin SY (2008) Applications of dual-color fluorescence cross-correlation spectroscopy in antibody binding studies. Anal Biochem 374(1):182–195

    Article  PubMed  CAS  Google Scholar 

  28. Stromqvist J, Johansson S, Xu L et al (2011) A modified FCCS procedure applied to Ly49A-MHC class I cis-interaction studies in cell membranes. Biophys J 101(5):1257–1269

    Article  PubMed  Google Scholar 

  29. Oyama R, Takashima H, Yonezawa M et al (2006) Protein-protein interaction analysis by C-terminally specific fluorescence labeling and fluorescence cross-correlation spectroscopy. Nucleic Acids Res 34(14):e102

    Article  PubMed  Google Scholar 

  30. Zhou X, Tang Y, Xing D (2011) One-step homogeneous protein detection based on aptamer probe and fluorescence cross-correlation spectroscopy. Anal Chem 83(8):2906–2912

    Article  PubMed  CAS  Google Scholar 

  31. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annual Review of Biomedical Engineering 7:55–76

    Article  PubMed  CAS  Google Scholar 

  32. Pinaud F, Michalet X, Bentolila LA et al (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(9):1679–1687

    Article  PubMed  CAS  Google Scholar 

  33. Chan WC, Maxwell DJ, Gao X et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46

    Article  PubMed  CAS  Google Scholar 

  34. Swift JL, Burger MC, Cramb DT (2009) A quantum dot-labeled ligand-receptor binding assay for G protein-coupled receptors contained in minimally purified membrane nanopatches. Methods Mol Biol 552:329–341

    Article  PubMed  CAS  Google Scholar 

  35. Xie C, Dong CQ, Ren JC (2008) Fluorescence cross-correlation spectroscopy using single wavelength laser excitation. Chem J Chin U 29(5):897–901

    CAS  Google Scholar 

  36. Ow H, Larson DR, Srivastava M et al (2005) Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett 5(1):113–117

    Article  PubMed  CAS  Google Scholar 

  37. Hui YY, Zhang B, Chang YC et al (2010) Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt Express 18(6):5896–5905

    Article  PubMed  CAS  Google Scholar 

  38. Neugart F, Zappe A, Jelezko F et al (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7(12):3588–3591

    Article  PubMed  CAS  Google Scholar 

  39. Kogure T, Kawano H, Abe Y et al (2008) Fluorescence imaging using a fluorescent protein with a large Stokes shift. Methods 45(3):223–226

    Article  PubMed  CAS  Google Scholar 

  40. Shcherbakova DM, Hink MA, Joosen L et al (2012) An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J Am Chem Soc 134(18):7913–7923

    Article  PubMed  CAS  Google Scholar 

  41. Foo YH, Naredi-Rainer N, Lamb DC et al (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys J 102(5):1174–1183

    Article  PubMed  CAS  Google Scholar 

  42. Savatier J, Jalaguier S, Ferguson ML et al (2010) Estrogen receptor interactions and dynamics monitored in live cells by fluorescence cross-correlation spectroscopy. Biochemistry-US 49(4):772–781

    Article  CAS  Google Scholar 

  43. Wenger J, Gerard D, Lenne PF et al (2006) Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations. Opt Express 14(25):12206–12216

    Article  PubMed  CAS  Google Scholar 

  44. Pan X, Foo W, Lim W et al (2007) Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev Sci Instrum 78(5):053711

    Article  PubMed  Google Scholar 

  45. Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. Chemphyschem 6(1):164–170

    Article  PubMed  CAS  Google Scholar 

  46. Glauner H, Ruttekolk IR, Hansen K et al (2010) Simultaneous detection of intracellular target and off-target binding of small molecule cancer drugs at nanomolar concentrations. Brit J Pharmacol 160(4):958–970

    Article  CAS  Google Scholar 

  47. Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta 1788(1):225–233

    Article  PubMed  CAS  Google Scholar 

  48. Ivashyna O, Garcia-Saez AJ, Ries J et al (2009) Detergent-activated BAX protein is a monomer. J Biol Chem 284(36):23935–23946

    Article  PubMed  CAS  Google Scholar 

  49. Mütze J, Ohrt T, Schwille P (2009) Fluorescence correlation spectroscopy in vivo. Laser Photon Rev 5(1):52–67

    Article  Google Scholar 

  50. Hell S, Reiner G, Cremer C et al (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J Microsc 169(3):391–405

    Article  Google Scholar 

  51. Benda A, Fagul’ova V, Deyneka A et al (2006) Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research. Langmuir ACS J Surf Colloids 22(23):9580–9585

    Article  CAS  Google Scholar 

  52. Magatti D, Ferri F (2003) 25 ns software correlator for photon and fluorescence correlation spectroscopy. Rev Sci Instrum 74(2):1135–1144

    Article  CAS  Google Scholar 

  53. Mocsár G, Kreith B, Buchholz J et al (2012) Multiplexed multiple-τ auto- and cross-correlators on a single FPGA. Rev Sci Instrum 83(4):046101–046103

    Article  PubMed  Google Scholar 

  54. Wahl M, Gregor I, Patting M et al (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11(26):3583–3591

    Article  PubMed  Google Scholar 

  55. Ries J, Yu SR, Burkhardt M et al (2009) Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nat Methods 6(9):643–645

    Article  PubMed  CAS  Google Scholar 

  56. Wohland T, Friedrich-Bénet K, Pick H et al (2001) The characterization of a transmembrane receptor by fluorescence correlation spectroscopy. In: Single Molecular Spectroscopy, Nobel Conference Lectures, Springer, Heidelberg, p. 195–210.

    Google Scholar 

  57. Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15(3):1311–1326

    Article  PubMed  CAS  Google Scholar 

  58. Zaragosi LE, Billon N, Ailhaud G et al (2007) Nucleofection is a valuable transfection method for transient and stable transgene expression in adipose tissue-derived stem cells. Stem Cells 25(3):790–797

    Article  PubMed  CAS  Google Scholar 

  59. Malone MH, Sciaky N, Stalheim L et al (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40

    Article  PubMed  Google Scholar 

  60. Wohland T, Shi X, Sankaran J et al (2010) Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18(10):10627–10641

    Article  PubMed  CAS  Google Scholar 

  61. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83(4):2300–2317

    Article  PubMed  CAS  Google Scholar 

  62. Rigler R, Mets Ü, Widengren J et al (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophs J 22(3):169–175

    CAS  Google Scholar 

  63. Cova S, Ghioni M, Lacaita A et al (1996) Avalanche photodiodes and quenching circuits for single-photon detection. Appl Opt 35(12):1956–1976

    Article  PubMed  CAS  Google Scholar 

  64. Sezgin E, Schwille P (2011) Fluorescence techniques to study lipid dynamics. Cold Spring Harb Perspect Biol 3(11):a009803

    Article  PubMed  Google Scholar 

  65. Milon S, Hovius R, Vogel H et al (2003) Factors influencing fluorescence correlation spectroscopy measurements on membranes: simulations and experiments. Chem Phys 288(2–3):171–186

    Article  CAS  Google Scholar 

  66. Humpolickova J, Gielen E, Benda A et al (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91(3):L23–L25

    Article  PubMed  CAS  Google Scholar 

  67. Shi X, Wohland T (2010) Fluorescence correlation spectroscopy. In: Diaspro A (ed) Nanoscopy and multidimensional optical fluorescence microscopy. Taylor and Francis, Boca Raton, FL

    Google Scholar 

  68. Maeder CI, Hink MA, Kinkhabwala A et al (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9(11):1319–1326

    Article  PubMed  CAS  Google Scholar 

  69. Saffarian S, Elson EL (2003) Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys J 84(3):2030–2042

    Article  PubMed  CAS  Google Scholar 

  70. Ries J, Petrášek Z, García-Sáez AJ et al (2010) A comprehensive framework for fluorescence cross-correlation spectroscopy. New J Phys 12(11):113009 (113032pp)

    Article  Google Scholar 

  71. Guo SM, He J, Monnier N et al (2012) Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: application to simulated and in vitro data. Anal Chem 84(9):3880–3888

    Article  PubMed  CAS  Google Scholar 

  72. He J, Guo SM, Bathe M (2012) Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: theory. Anal Chem 84(9):3871–3879

    Article  PubMed  CAS  Google Scholar 

  73. Kohl T, Heinze KG, Kuhlemann R et al (2002) A protease assay for two-photon crosscorrelation and FRET analysis based solely on fluorescent proteins. Proc Natl Acad Sci USA 99(19):12161–12166

    Article  PubMed  CAS  Google Scholar 

  74. Hillesheim LN, Chen Y, Muller JD (2006) Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells. Biophys J 91(11):4273–4284

    Article  PubMed  CAS  Google Scholar 

  75. Smith EM, Mueller JD (2012) The statistics of protein expression ratios for cellular fluorescence studies. Eur Biophys J EBJ 41(3):341–352

    Article  CAS  Google Scholar 

  76. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30(3):154–156

    Article  PubMed  CAS  Google Scholar 

  77. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220

    Article  PubMed  CAS  Google Scholar 

  78. Bacia K, Petrasek Z, Schwille P (2012) Correcting for spectral crosstalk in dual-color fluorescence cross-correlation spectroscopy. Chemphyschem 13(5):1221–1231

    Article  PubMed  CAS  Google Scholar 

  79. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  PubMed  CAS  Google Scholar 

  80. Muller-Taubenberger A, Anderson KI (2007) Recent advances using green and red fluorescent protein variants. Appl Microbiol Biot 77(1):1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ma, X., Foo, Y.H., Wohland, T. (2014). Fluorescence Cross-Correlation Spectroscopy (FCCS) in Living Cells. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics