Skip to main content

The Fate of HIV-1 Capsid: A Biochemical Assay for HIV-1 Uncoating

  • Protocol
Human Retroviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1087))

Abstract

The uncoating process of HIV-1 is a poorly understood process, so the development of a reliable assay to study uncoating is critical for moving the field forward. Here we describe an uncoating assay that currently represents the state-of-the-art biochemical procedure for monitoring uncoating and core stability during infection. This assay is based on the biochemical separation of soluble capsid protein from particulate capsid cores and provides information about the fate of the capsid during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki Y, Craigie R (2007) The road to chromatin—nuclear entry of retroviruses. Nat Rev Microbiol 5:187–196

    Article  CAS  PubMed  Google Scholar 

  2. Iordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M (2006) Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3:4

    Article  PubMed Central  PubMed  Google Scholar 

  3. Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75:3626–3635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A 90:6125–6129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, Watanabe S, Kigawa T, Yokoyama S, Aiken C, Diaz-Griffero F (2011) RING domain mutations uncouple TRIM5alpha restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 86(3):1717–1727

    Article  PubMed  Google Scholar 

  7. Hulme AE, Perez O, Hope TJ (2011) Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. Proc Natl Acad Sci U S A 108:9975–9980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Diaz-Griffero F, Kar A, Lee M, Stremlau M, Poeschla E, Sodroski J (2007) Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. Virology 369(2):400–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Perron MJ, Stremlau M, Lee M, Javanbakht H, Song B, Sodroski J (2007) The human TRIM5alpha restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J Virol 81:2138–2148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Diaz-Griffero F, Perron M, McGee-Estrada K, Hanna R, Maillard PV, Trono D, Sodroski J (2008) A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 378:233–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ohkura S, Goldstone DC, Yap MW, Holden-Dye K, Taylor IA, Stoye JP (2011) Novel escape mutants suggest an extensive TRIM5alpha binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLoS Pathog 7:e1002011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 103:5514–5519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H, Li X, Sodroski J (2007) Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain. J Virol 81:10362–10378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shi J, Zhou J, Shah VB, Aiken C, Whitby K (2011) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85: 542–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Berube J, Bouchard A, Berthoux L (2007) Both TRIM5alpha and TRIMCyp have only weak antiviral activity in canine D17 cells. Retrovirology 4:68

    Article  PubMed Central  PubMed  Google Scholar 

  16. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137:1282–1292

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11:672–675

    Article  CAS  PubMed  Google Scholar 

  19. Briggs JA, Wilk T, Welker R, Krausslich HG, Fuller SD (2003) Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22:1707–1715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159: 441–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Forshey BM, von Schwedler U, Sundquist WI, Aiken C (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76:5667–5677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  CAS  PubMed  Google Scholar 

  23. Asmal M, Colgan J, Naef F, Yu B, Lee Y, Magnasco M, Luban J (2003) Production of ribosome components in effector CD4+ T cells is accelerated by TCR stimulation and coordinated by ERK-MAPK. Immunity 19: 535–548

    Article  CAS  PubMed  Google Scholar 

  24. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:569–573

    Article  CAS  PubMed  Google Scholar 

  25. Neagu MR, Ziegler P, Pertel T, Strambio-De-Castillia C, Grutter C, Martinetti G, Mazzucchelli L, Grutter M, Manz MG, Luban J (2009) Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J Clin Invest 119: 3035–3047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sayah DM, Luban J (2004) Selection for loss of Ref1 activity in human cells releases human immunodeficiency virus type 1 from cyclophilin A dependence during infection. J Virol 78:12066–12070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Berthoux L, Sebastian S, Sayah DM, Luban J (2005) Disruption of human TRIM5alpha antiviral activity by nonhuman primate orthologues. J Virol 79:7883–7888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. McEwan WA, Schaller T, Ylinen LM, Hosie MJ, Towers GJ, Willett BJ (2009) Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat. J Virol 83:8270–8275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. O’Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74:10074–10080

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pauza CD, Price TM (1988) Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis. J Cell Biol 107:959–968

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by an R01 AI087390 to F.D.-G, NIH grant RO1AI59159 to J.L., Swiss National Science Foundation grant 3100A0-128655 to J.L., and a K99/R00 Pathway to Independence Award to F.D.-G. from the National Institutes of Health 4R00MH086162-02.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yang, Y., Luban, J., Diaz-Griffero, F. (2014). The Fate of HIV-1 Capsid: A Biochemical Assay for HIV-1 Uncoating. In: Vicenzi, E., Poli, G. (eds) Human Retroviruses. Methods in Molecular Biology, vol 1087. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-670-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-670-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-669-6

  • Online ISBN: 978-1-62703-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics