Skip to main content

Identifying Different Types of Chromatin Using Giemsa Staining

  • Protocol
  • First Online:
Functional Analysis of DNA and Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1094))

Abstract

Mixtures of polychrome methylene blue-eosin Y (i.e., Giemsa stain) are widely used in biological staining. They induce a striking purple coloration of chromatin DNA (the Romanowsky-Giemsa effect), which contrasts with the blue-stained RNA-containing cytoplasm and nucleoli. After specific prestaining treatments that induce chromatin disorganization (giving banded or harlequin chromosomes), Giemsa staining produces a differential coloration, with C- and G-bands appearing in purple whereas remaining chromosome regions are blue. Unsubstituted (TT) and bromo-substituted (BT) DNAs also appear purple and blue, respectively. The same occurs in the case of BT and BB chromatids.

In addition to discussing the use of Giemsa stain as a suitable method to reveal specific features of chromosome structure, some molecular processes and models are also described to explain Giemsa staining mechanisms of chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horobin RW, Kiernan JA (2002) Conn’s biological stains. A handbook of dyes, stains and fluorochromes for use in biology and medicine, 10th edn. Bios Scientific Publishers, Oxford

    Google Scholar 

  2. Zollinger H (2003) Color chemistry. Synthesis, properties, and applications of organic dyes and pigments, 3rd edn. VHCA, Zürich, Wiley-VCH, Weinheim

    Google Scholar 

  3. Scott JE (1973) Affinity, competition and specific interactions in the biochemistry and histochemistry of polyelectrolytes. Biochem Soc Trans 1:787–806

    CAS  Google Scholar 

  4. Scott JE (1980) The molecular biology of histochemical staining by cationic phthalocyanine dyes: the design of replacements for Alcian blue. J Microsc 119:373–381

    Article  PubMed  CAS  Google Scholar 

  5. Horobin RW (1988) Understanding histochemistry: selection, evaluation and design of biological stains. Horwood, Chichester

    Google Scholar 

  6. Mann G (1902) Physiological histology. Clarendon, Oxford

    Google Scholar 

  7. Baker JR (1958) Principles of biological microtechnique: a study of fixation and dyeing. Methuen, London

    Google Scholar 

  8. Horobin RW (1982) Histochemistry. An explanatory outline of histochemistry and biophysical staining. Gustav Fischer, Butterworths, Stuttgart, London

    Google Scholar 

  9. Stockert JC (1985) Cytochemistry of nucleic acids: binding mechanisms of dyes and fluorochromes. Microsc Electron Biol Celular 9:89–131

    PubMed  CAS  Google Scholar 

  10. Dapson RW (2005) Dye-tissue interactions: mechanisms, quantification and bonding parameters for dyes used in biological staining. Biotech Histochem 80:49–72

    Article  PubMed  CAS  Google Scholar 

  11. Stockert JC, Abasolo MI (2011) Inaccurate chemical structure of dyes and fluorochromes found in the literature can be problematic for teaching and research. Biotech Histochem 86:52–60

    Article  PubMed  CAS  Google Scholar 

  12. Horobin RW (2011) How Romanowsky stains work and why they remain valuable ̶ including a proposed universal Romanowsky staining mechanism and a rational troubleshooting scheme. Biotech Histochem 86:36–51

    Article  PubMed  CAS  Google Scholar 

  13. Stockert JC, Lisanti JA (1972) Acridine-orange differential fluorescence of fast- and slow-reassociating DNA after in situ DNA denaturation and reassociation. Chromosoma 37:117–130

    Article  PubMed  CAS  Google Scholar 

  14. Armas-Portela R, Cañete M, Stockert JC (1981) Orthochromatic and metachromatic staining reactions of chromatin by thiazine dyes. Biol Zentralbl 100:673–678

    Google Scholar 

  15. Barrera C, Mazzolli AB, Pelling C, Stockert JC (1993) Metachromatic staining of human sperm nuclei after reduction of disulphide bonds. Acta Histochem 94:141–149

    Article  PubMed  CAS  Google Scholar 

  16. Juarranz A, Cañete M, Stockert JC (1987) Colour differences in the chromatin staining by Cuprolinic blue. Z Mikrosk Anat Forsch 101(532–536):1987

    Google Scholar 

  17. Gutiérrez-Gonzálvez MG, Armas-Portela R, Stockert JC (1987) Differential staining of biological structures by ruthenium red. J Microsc 145:333–340

    PubMed  Google Scholar 

  18. Lisanti JA, Stockert JC (1974) Color differences in heated and Giemsa stained mouse chromosomes. Stain Technol 49:253–256

    PubMed  CAS  Google Scholar 

  19. Hazen MJ, Villanueva A, Juarranz A et al (1985) Photosensitizing dyes and fluorochromes as substitutes for 33258 Hoechst in the fluorescence–plus−Giemsa (FPG) chromosome technique. Histochemistry 83:241–244

    Article  PubMed  CAS  Google Scholar 

  20. Krafts K (1993) The Ehrlich-Chenzinsky-Plehn-Malachowski-Romanowsky-Nocht-Jenner-May-Grünwald-Leishman-Reuter-Wright-Giemsa-Lillie-Roe-Wilcox stain. The mystery unfolds. Clin Lab Med 13:759–771

    Google Scholar 

  21. Krafts K, Hempelmann E, Oleksyn BJ (2011) The color purple: from royalty to laboratory, with apologies to Malachowski. Biotech Histochem 86:7–35

    Article  PubMed  CAS  Google Scholar 

  22. Wittekind DH (1983) On the nature of Romanowsky-Giemsa staining and its significance for cytochemistry and histochemistry: an overall view. Histochem J 15:1029–1047

    Article  PubMed  CAS  Google Scholar 

  23. Barcia JJ (2007) The Giemsa stain: its history and applications. Int J Surg Pathol 15:292–296

    Article  PubMed  Google Scholar 

  24. Wittekind DH (1979) On the nature of Romanowsky dyes and the Romanowsky-Giemsa effect. Clin Lab Haematol 1:247–262

    Article  PubMed  CAS  Google Scholar 

  25. Horobin RW, Walter KJ (1987) Understanding Romanowsky staining. I: The Romanowsky-Giemsa effect in blood smears. Histochemistry 86:331–336

    Article  PubMed  CAS  Google Scholar 

  26. Power KT (1982) The Romanowsky stains: a review. Am J Med Technol 48:519–523

    PubMed  CAS  Google Scholar 

  27. Green FJ (1990) The Sigma-Aldrich handbook of stains, dyes and indicators. Aldrich Chemicals Co., Milwaukee, Wisconsin

    Google Scholar 

  28. Dolan M (2011) The role of the Giemsa stain in cytogenetics. Biotech Histochem 86:94–97

    Article  PubMed  CAS  Google Scholar 

  29. Dunning K, Safo AO (2011) The ultimate Wright-Giemsa stain: 60 years in the making. Biotech Histochem 86:69–75

    Article  PubMed  CAS  Google Scholar 

  30. Krafts KP, Pambuccian SE (2011) Romanowsky staining in cytopathology: history, advantages and limitations. Biotech Histochem 86:82–93

    Article  PubMed  CAS  Google Scholar 

  31. Sumner AT, Evans HJ (1973) Mechanisms involved in the banding of chromosomes with quinacrine and Giemsa. II. The interaction of the dyes with the chromosomal components. Exp Cell Res 81:223–236

    Article  PubMed  CAS  Google Scholar 

  32. Comings DE (1975) Mechanisms of chromosome banding. IV. Optical properties of the Giemsa dyes. Chromosoma 50:89–110

    PubMed  CAS  Google Scholar 

  33. Wittekind DH, Kretschmer V, Löhr W (1976) Kann Azur B-Eosin die May-Grünwald-Giemsa-Färbung ersetzen? Blut 32:71–78

    Article  PubMed  CAS  Google Scholar 

  34. Sumner AT (1980) Dye binding mechanisms in G-banding of chromosomes. J Microsc 119:397–406

    Article  PubMed  CAS  Google Scholar 

  35. Friedrich K, Seiffert W, Zimmermann HW (1990) Romanowsky dyes and Romanowsky-Giemsa effect. 5. Structural investigations of the purple DNA-AB-EY dye complexes of Romanowsky-Giemsa staining. Histochemistry 93:247–256

    Article  PubMed  CAS  Google Scholar 

  36. Bergeron JA, Singer M (1958) Metachromasy: an experimental and theoretical reevaluation. J Biophys Biochem Cytol 4:433–457

    Article  PubMed  CAS  Google Scholar 

  37. Woynarowski JM, Krugliak M, Ginsburg H (2007) Pharmacogenomic analyses of targeting the AT-rich malaria parasite genome with AT-specific alkylating drugs. Mol Biochem Parasitol 154:70–81

    Article  PubMed  CAS  Google Scholar 

  38. Bobrow M, Madan K, Pearson PL (1972) Staining of some specific regions of human chromosomes, particularly the secondary constriction of number 9. Nat New Biol 238:122–124

    Article  PubMed  CAS  Google Scholar 

  39. Gagné R, Laberge C (1972) Specific cytological recognition of the heterochromatic segment of number 9 chromosome in man. Exp Cell Res 73:239–242

    Article  PubMed  Google Scholar 

  40. Alves P, Jonasson J (1978) New staining method for the detection of sister chromatid exchanges in BrdU-labelled chromosomes. J Cell Sci 32:185–195

    PubMed  CAS  Google Scholar 

  41. Takayama S, Sakanishi S (1977) Differential Giemsa staining of sister chromatids after extraction with acids. Chromosoma 64:109–115

    Article  PubMed  CAS  Google Scholar 

  42. Jan KY, Su PF, Lee TC (1985) Reversal differential staining of sister chromatids induced by Hoechst plus black light and endonucleases. Expl Cell Res 157:307–314

    Article  CAS  Google Scholar 

  43. Lisanti JA, Stockert JC (1973) Observations on the staining of centromeric heterochromatin with Giemsa. Experientia 29:887–888

    Article  PubMed  CAS  Google Scholar 

  44. Sumner AT (1990) Chromosome banding. Unwin Hyman, London

    Google Scholar 

  45. Stockert JC, Pinna-Senn E, Bella JL, Lisanti JA (2005) DNA-binding fluorochromes: correlation between C-banding of mouse metaphase chromosomes and hydrogen bonding to adenine-thymine base pairs. Acta Histochem 106:413–420

    Article  PubMed  CAS  Google Scholar 

  46. Ribas M, Korenberg JR, Peretti D et al (1994) Sister chromatid differentiation in 5-bromo-2′-deoxyuridine-substituted chromosomes: a study with DNA-specific ligands and monoclonal antibody to histone H2B. Chromosome Res 2:428–438

    Article  PubMed  CAS  Google Scholar 

  47. Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251:156–158

    Article  PubMed  CAS  Google Scholar 

  48. Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  PubMed  CAS  Google Scholar 

  49. Verma RS, Babu A (1995) Human chromosome. Principles and techniques, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  50. Czepulkowski B (2001) Analyzing chromosomes. Springer, New York

    Book  Google Scholar 

  51. Kimura E, Hoshi O, Ushiki T (2004) Atomic force microscopy of human metaphase chromosomes after differential staining of sister chromatids. Arch Histol Cytol 67:171–177

    Article  PubMed  Google Scholar 

  52. Rooney DE (2001) Human cytogenetics, constitutional analysis, 3rd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  53. Hazen MJ, Villanueva A, Stockert JC (1987) Induction of sister chromatid exchanges in Allium cepa meristematic cells exposed to meso-tetra (4-pyridyl) porphine and hematoporphyrin photo-radiation. Photochem Photobiol 46:463–467

    Article  CAS  Google Scholar 

  54. Clark G (1981) Staining procedures used by the Biological Stain Commission, 4th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  55. Kiernan JA (1990) Histological and histochemical methods: theory and practice, 2nd edn. Pergamon Press, Oxford, New York

    Google Scholar 

  56. Espada J, Valverde P, Stockert JC (1993) Selective fluorescence of eosinophilic structures in grasshopper and mammalian testis stained with haematoxylin-eosin. Histochemistry 99:385–390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Cañete, J. Espada, and A. Villanueva for valuable collaboration. This work was supported by a grant (CTQ2010-20870-C03-03) from the Ministerio de Ciencia e Innovación, Spain.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Stockert, J.C., Blázquez-Castro, A., Horobin, R.W. (2014). Identifying Different Types of Chromatin Using Giemsa Staining. In: Stockert, J., Espada, J., Blázquez-Castro, A. (eds) Functional Analysis of DNA and Chromatin. Methods in Molecular Biology, vol 1094. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-706-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-706-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-705-1

  • Online ISBN: 978-1-62703-706-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics