Skip to main content

Case Study 5. Deconvoluting Hyperbilirubinemia: Differentiating Between Hepatotoxicity and Reversible Inhibition of UGT1A1, MRP2, or OATP1B1 in Drug Development

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing (ICH Expert Working Group. The international conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH); Multidisciplinary guidelines; Nonclinical safety studies (M3). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf, 2009). The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits (Sedlak and Snyder. Pediatrics 113(6):1776–1782, 2004), bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport (Keogh. Adv Pharmacol 63:1–42, 2012). Alternatively, hepatocellular necrosis, hypoalbuminuria, or cholestasis may also lead to elevation of bilirubin; in some cases, these effects may be irreversible (FDA/CDER. Guidance for industry drug-induced liver injury: premarketing clinical evaluation. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM174090.pdf, 2012).

This chapter aims to demonstrate application of enzyme kinetic principles in understanding the risk of bilirubin elevation through inhibition of multiple processes—involving both enzymes and transporters. In the sections that follow, we first provide a brief summary of bilirubin formation and disposition. Two case examples are then provided to illustrate the enzyme kinetic studies needed for risk assessment and for identifying the mechanisms of bilirubin elevation. Caveats of methods and data interpretation are discussed in these case studies. The data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in enzyme kinetics to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICH Expert Working Group (2009) The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH); Multidisciplinary Guidelines; Nonclinical Safety Studies (M3). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf. Accessed 20 June 2013

  2. Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113(6):1776–1782

    Article  PubMed  Google Scholar 

  3. Keogh JP (2012) Membrane transporters in drug development. Adv Pharmacol 63:1–42. doi:10.1016/B978-0-12-398339-8.00001-X, B978-0-12-398339-8.00001-X [pii]

    Article  CAS  PubMed  Google Scholar 

  4. FDA/CDER (2012) Guidance for industry drug-induced liver injury: premarketing clinical evaluation. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM174090.pdf. Accessed 27 Aug 2012

  5. London IM, West R, Shemin D, Rittenberg D (1950) On the origin of bile pigment in normal man. J Biol Chem 184(1):351–358

    CAS  PubMed  Google Scholar 

  6. Billing BH, Black M (1969) Bilirubin metabolism. Gut 10(4):250–254

    Article  CAS  PubMed  Google Scholar 

  7. van de Steeg E, Stranecky V, Hartmannova H, Noskova L, Hrebicek M, Wagenaar E, van Esch A, de Waart DR, Oude Elferink RP, Kenworthy KE, Sticova E, al-Edreesi M, Knisely AS, Kmoch S, Jirsa M, Schinkel AH (2012) Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J Clin Invest 122(2):519–528. doi:10.1172/JCI59526, 59526 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bosma PJ, Seppen J, Goldhoorn B, Bakker C, Oude Elferink RP, Chowdhury JR, Chowdhury NR, Jansen PL (1994) Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J Biol Chem 269(27):17960–17964

    CAS  PubMed  Google Scholar 

  9. Tukey RH, Strassburg CP (2000) Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616. doi:10.1146/annurev.pharmtox.40.1.581

    Article  CAS  PubMed  Google Scholar 

  10. Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, Smith PC (2012) Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem 84(1):98–105. doi:10.1021/ac201704a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Xia Wang JR-C, Roy-Chowdhury N (2006) Bilirubin metabolism: applied physiology. Curr Paediatr 16:70–74

    Article  Google Scholar 

  12. Lengyel G, Veres Z, Szabo P, Vereczkey L, Jemnitz K (2005) Canalicular and sinusoidal disposition of bilirubin mono- and diglucuronides in sandwich-cultured human and rat primary hepatocytes. Drug Metab Dispos 33(9):1355–1360. doi:10.1124/dmd.105.004481, dmd.105.004481 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Scheffer GL, Kool M, de Haas M, de Vree JM, Pijnenborg AC, Bosman DK, Elferink RP, van der Valk P, Borst P, Scheper RJ (2002) Tissue distribution and induction of human multidrug resistant protein 3. Lab Invest 82(2):193–201

    Article  CAS  PubMed  Google Scholar 

  14. Roy-Chowdhury N, Lu Y, Roy-Chowdhury J (2007) Bilirubin metabolism. In: Juan Rodés J-PB, Blei A, Reichen J, Rizzetto M (eds) Textbook of hepatology: from basic science to clinical practice, 3rd edn. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  15. Sampietro M, Iolascon A (1999) Molecular pathology of Crigler-Najjar type I and II and Gilbert’s syndromes. Haematologica 84(2):150–157

    CAS  PubMed  Google Scholar 

  16. Itaaho K, Mackenzie PI, Ikushiro S, Miners JO, Finel M (2008) The configuration of the 17-hydroxy group variably influences the glucuronidation of beta-estradiol and epiestradiol by human UDP-glucuronosyltransferases. Drug Metab Dispos 36(11):2307–2315. doi:10.1124/dmd.108.022731, dmd.108.022731 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Soars MG, Ring BJ, Wrighton SA (2003) The effect of incubation conditions on the enzyme kinetics of udp-glucuronosyltransferases. Drug Metab Dispos 31(6):762–767, 31/6/762 [pii]

    Article  CAS  PubMed  Google Scholar 

  18. Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC (2012) Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos 40(5):1051–1065. doi:10.1124/dmd.111.043117, dmd.111.043117 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Tracy TS, Remmel RP (2011) Correlation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors. Drug Metab Dispos 39(2):322–329. doi:10.1124/dmd.110.035030, dmd.110.035030 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108

    Article  CAS  PubMed  Google Scholar 

  21. FDA/CDER (2012) Draft guidance for industry drug interaction studies. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf. Accessed 27 Aug 2012

  22. Nso AP, Larru B, Bellon JM, Mellado MJ, Ramos JT, Gonzalez MI, Navarro ML, Munoz-Fernandez MA, Jose MI (2011) HIV-infected adolescents: relationship between atazanavir plasma levels and bilirubin concentrations. J Adolesc Health 48(1):100–102. doi:10.1016/j.jadohealth.2010.05.009, S1054-139X(10)00251-X [pii]

    Article  PubMed  Google Scholar 

  23. Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG (2005) In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos 33(11):1729–1739. doi:10.1124/dmd.105.005447, dmd.105.005447 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Mano Y, Usui T, Kamimura H (2008) Species differences in inhibition potential of nonsteroidal anti-inflammatory drugs against estradiol 3beta-glucuronidation between rats, dogs, and humans. J Pharm Sci 97(7):2805–2810. doi:10.1002/jps.21185

    Article  CAS  PubMed  Google Scholar 

  25. Soars MG, Riley RJ, Findlay KA, Coffey MJ, Burchell B (2001) Evidence for significant differences in microsomal drug glucuronidation by canine and human liver and kidney. Drug Metab Dispos 29(2):121–126

    CAS  PubMed  Google Scholar 

  26. Sommerer U, Gordon ER, Goresky CA (1988) Microsomal specificity underlying the differing hepatic formation of bilirubin glucuronide and glucose conjugates by rat and dog. Hepatology 8(1):116–124, S027091398800014X [pii]

    Article  CAS  PubMed  Google Scholar 

  27. Furlan V, Demirdjian S, Bourdon O, Magdalou J, Taburet AM (1999) Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther 289(2):1169–1175

    CAS  PubMed  Google Scholar 

  28. Ishizuka H, Konno K, Shiina T, Naganuma H, Nishimura K, Ito K, Suzuki H, Sugiyama Y (1999) Species differences in the transport activity for organic anions across the bile canalicular membrane. J Pharmacol Exp Ther 290(3):1324–1330

    CAS  PubMed  Google Scholar 

  29. Izumi T, Hosiyama K, Enomoto S, Sasahara K, Sugiyama Y (1997) Pharmacokinetics of troglitazone, an antidiabetic agent: prediction of in vivo stereoselective sulfation and glucuronidation from in vitro data. J Pharmacol Exp Ther 280(3):1392–1400

    CAS  PubMed  Google Scholar 

  30. Mistry M, Houston JB (1987) Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos 15(5):710–717

    CAS  PubMed  Google Scholar 

  31. Soars MG, Burchell B, Riley RJ (2002) In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J Pharmacol Exp Ther 301(1):382–390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Templeton, I., Eichenbaum, G., Sane, R., Zhou, J. (2014). Case Study 5. Deconvoluting Hyperbilirubinemia: Differentiating Between Hepatotoxicity and Reversible Inhibition of UGT1A1, MRP2, or OATP1B1 in Drug Development. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics