Skip to main content

Methylation-Sensitive Amplified Polymorphism (MSAP) Marker to Investigate Drought-Stress Response in Montepulciano and Sangiovese Grape Cultivars

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1112))

Abstract

Methylation-sensitive amplified polymorphism (MSAP) is a technique developed for assessing the extent and pattern of cytosine methylation and has been applied to genomes of several species (Arabidopsis, grape, maize, tomato, and pepper). The technique relies on the use of isoschizomers that differ in their sensitivity to methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gruenbaum Y, Navey-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  CAS  PubMed  Google Scholar 

  2. Pradhan S, Adams RLP (1995) Distinct CG and CNG DNA methyltransferases in Pisum sativum. Plant J 7:471–481

    Article  CAS  PubMed  Google Scholar 

  3. Kovarik A, Matyasek R, Leitch A, Gazdova B, Fulnecek J, Bezdek M (1997) Variability in CpNpG methylation in higher plant genomes. Gene 204:25–33

    Article  CAS  PubMed  Google Scholar 

  4. Jeddeloh JA, Richards EJ (1996) (m)CCG methylation in angiosperms. Plant J 9:579–586

    Article  CAS  PubMed  Google Scholar 

  5. Meyer P, Niedenhof I, Ten Lohuis M (1994) Evidence for cytosine methylation of non-symmetrical sequences in transgenic Petunia hybrida. EMBO J 13:2084–2088

    CAS  PubMed  Google Scholar 

  6. Ulian EC, Magill JM, Magill CW, Smith RH (1996) DNA methylation and expression of NPT II in transgenic petunias and progeny. Theor Appl Genet 92:976–981

    Article  CAS  PubMed  Google Scholar 

  7. Rossi V, Motto M, Pellegrini L (1997) Analysis of the methylation pattern of the maize Opaque-2 (O2) promoter and in vitro binding studies indicate that the O2 B-Zip protein and other endosperm factors can bind to methylated target sequences. J Biol Chem 272:13758–13765

    Article  CAS  PubMed  Google Scholar 

  8. Finnegan EJ, Brettell RIS, Dennis ES (1993) The role of DNA methylation in the regulation of plant gene expression. In: Jost JP, Saluz HP (eds) DNA methylation: molecular biology and biological significance. Birkhauser, Basel

    Google Scholar 

  9. Pikaard CS (1999) Nucleolar dominance and silencing of transcription. Trends Plant Sci 4:478–483

    Article  PubMed  Google Scholar 

  10. Dhar MS, Pethe VV, Gupta VS, Ranjekar PK (1990) Predominance and tissue specificity of adenine methylation in rice. Theor Appl Genet 80:402–408

    Article  CAS  PubMed  Google Scholar 

  11. Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    Article  CAS  PubMed  Google Scholar 

  12. Lund G, Messing J, Viotti A (1995) Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol Gen Genet 246:716–722

    Article  CAS  PubMed  Google Scholar 

  13. Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10:217–223

    Article  CAS  PubMed  Google Scholar 

  14. Richards EJ (1997) DNA methylation and plant development. Trends Genet 13:319–323

    Article  CAS  PubMed  Google Scholar 

  15. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  CAS  PubMed  Google Scholar 

  16. Ashikawa I (2001) Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars. Plant Mol Biol 45:31–39

    Article  CAS  PubMed  Google Scholar 

  17. Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    Article  CAS  PubMed  Google Scholar 

  18. Xu M, Li X, Korban SS (2000) AFLP-based detection of DNA methylation. Plant Mol Biol Rep 18:361–368

    Article  CAS  Google Scholar 

  19. Portis E, Acquadro A, Comino C, Lanteri S (2004) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178

    Article  CAS  Google Scholar 

  20. McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22:3640–3659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci U S A 87:5509–5513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Albertini, E., Marconi, G. (2014). Methylation-Sensitive Amplified Polymorphism (MSAP) Marker to Investigate Drought-Stress Response in Montepulciano and Sangiovese Grape Cultivars. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics. Methods in Molecular Biology, vol 1112. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-773-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-773-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-772-3

  • Online ISBN: 978-1-62703-773-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics