Skip to main content

X-Ray Microanalysis in the Scanning Electron Microscope

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10−18 g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roomans GM (1988) Introduction to X-ray microanalysis in biology. J Electron Microsc Tech 9:3–18

    Article  CAS  PubMed  Google Scholar 

  2. Roomans GM (1988) Quantitative X-ray microanalysis of biological specimens. J Electron Microsc Tech 9:19–44

    Article  CAS  PubMed  Google Scholar 

  3. Wróblewski R, Roomans GM, Jansson E et al (1978) Electron probe X-ray microanalysis of human muscle biopsies. Histochemistry 55:281–292

    Article  PubMed  Google Scholar 

  4. Sigee DC, Gilpin C (1994) X-ray microanalysis with the environmental scanning electron microscope: interpretation of data obtained under different atmospheric conditions. Scanning Microsc Suppl 8:219–229

    CAS  PubMed  Google Scholar 

  5. Marshall AT (1980) Quantitative X-ray microanalysis of froze-hydrated bulk biological specimens. Scanning Electron Microsc 1980(II):335–348

    Google Scholar 

  6. Marshall AT, Goodyear MJ, Crewther SJ (2012) Sequential quantitative X-ray elemental imaging of frozen-hydrated and freeze-dried biological bulk samples in the SEM. J Microsc (Oxford) 245:17–25

    Article  CAS  Google Scholar 

  7. Zs-Nagy I (1989) A review of the use of bulk specimen X-ray microanalysis in cancer research. Scanning Microsc 3:473–482

    CAS  PubMed  Google Scholar 

  8. Wroblewski J, Wróblewski R, Roomans GM (1988) Low temperature techniques for microanalysis in pathology: alternatives to cryoultramicrotomy. J Electron Microsc Tech 9:83–98

    Article  CAS  PubMed  Google Scholar 

  9. Roomans GM (2002) X-ray microanalysis of epithelial cells in culture. Meth Mol Biol 188:273–289

    Google Scholar 

  10. Jin Z, Roomans GM (1997) X-ray microanalysis of uterine secretion in the mouse. J Submicrosc Cytol Pathol 29:173–177

    CAS  PubMed  Google Scholar 

  11. Nilsson H, Kozlova I, Vanthanouvong V et al (2004) Collection and X-ray microanalysis of airway surface liquid in the mouse using ion exchange beads. Micron 35:701–705

    Article  CAS  PubMed  Google Scholar 

  12. McMillan EB, Roomans GM (1990) Techniques for X-ray microanalysis of intestinal epithelium using bulk specimens. Biomed Res (India) 1:1–10

    Google Scholar 

  13. Vanthanouvong V, Roomans GM (2004) Methods for determining the composition of nasal fluid by X-ray microanalysis. Microsc Res Tech 63:122–128

    Article  CAS  PubMed  Google Scholar 

  14. Kozlova I, Vanthanouvong V, Almgren B et al (2005) Elemental composition of airway surface liquid in the pig determined by X-ray microanalysis. Am J Resp Cell Mol Biol 32:59–64

    Article  CAS  Google Scholar 

  15. Vanthanouvong V, Kozlova I, Johannesson M et al (2006) Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases. Microsc Res Tech 69:271–276

    Article  CAS  PubMed  Google Scholar 

  16. Hongpaisan J, Mörk AC, Roomans GM (1994) Use of in vitro systems for X-ray microanalysis. Scanning Microsc Suppl 8:109–116

    CAS  PubMed  Google Scholar 

  17. Andersson C, Roomans GM (2002) Determination of chloride efflux by X-ray microanalysis versus MQAE fluorescence. Microsc Res Tech 59:351–355

    Google Scholar 

  18. Varelogianni G, Hussain R, Strid H, et al (2013) The effect of ambroxol on chloride transport and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells. Cell Biol Int 37:1149–1156

    Google Scholar 

  19. Roomans GM, Afzelius BA, Kollberg H et al (1978) Electrolytes in nails analysed by X-ray microanalysis in electron microscopy. Considerations of a new method for the diagnosis of cystic fibrosis. Acta Paediatr Scand 67:89–94

    Article  CAS  PubMed  Google Scholar 

  20. Roomans GM, Forslind B (1980) Copper in green hair: a quantitative investigation by electron probe X-ray microanalysis. Ultrastruct Pathol 1:301–307

    Article  CAS  PubMed  Google Scholar 

  21. Pappalardo S, Carlino V, Brutto D et al (2010) How do biomaterials affect the biological activities and responses of cells? An in vitro study. Minerva Stomatol 59:445–464

    CAS  PubMed  Google Scholar 

  22. Gallego L, Junquera L, Meana A et al (2010) Three-dimensional culture of mandibular human osteoblasts on a novel albumin scaffold: growth, proliferation, and differentiation potential in vitro. Int J Oral Maxillofac Implants 25:699–705

    PubMed  Google Scholar 

  23. Yamamichi N, Pugdee K, Chang WJ et al (2008) Gene expression monitoring in osteoblasts on titanium coated with fibronectin-derived peptide. Dent Mater J 27:744–750

    Article  CAS  PubMed  Google Scholar 

  24. Shaw JA, Macey DJ, Brooker LR et al (2009) The chiton stylus canal: an element delivery pathway for tooth cusp biomineralization. J Morphol 270:588–600

    Article  PubMed  Google Scholar 

  25. Sabel N (2012) Enamel of primary teeth – morphological and chemical aspects. Swed Dent J Suppl 222:1–77

    PubMed  Google Scholar 

  26. Politi Y, Metzler RA, Albrecht M et al (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kawakubo A, Matsunaga T, Ishizaki H et al (2011) Zinc as an essential trace element in the acceleration of matrix vesicles-mediated mineral deposition. Microsc Res Tech 74:1161–1165

    Article  CAS  PubMed  Google Scholar 

  28. Frey B (2007) Botanical X-ray microanalysis in cryoscanning electron microscopy. Meth Mol Biol 369:529–541

    Article  CAS  Google Scholar 

  29. McCully ME, Canny MJ, Huang CX et al (2010) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: energy dispersive X-ray microanalysis (CEDX) applications. Funct Plant Biol 37:1011–1040

    Article  Google Scholar 

  30. Boekestein A, Stadhouders AM, Stols ALH et al (1983) Quantitative biological X-ray microanalysis of bulk specimens: an analysis of inaccuracies involved in ZAF-correction. Scanning Electron Microsc 1983(II):725–736

    Google Scholar 

  31. Boekestein A, Stadhouders AM, Stols ALH et al (1983) A comparison of ZAF correction methods in quantitative X-ray microanalysis of light-element specimens. Ultramicroscopy 12:65–68

    Article  CAS  Google Scholar 

  32. Roomans GM (1981) Quantitative electron probe X-ray microanalysis of biological bulk specimens. Scanning Electron Microsc 1981(2):344–356

    Google Scholar 

  33. Roomans GM, Sevéus LA (1977) Preparation of thin cryosectioned standards for quantitative microprobe analysis. J Submicrosc Cytol 9:31–35

    CAS  Google Scholar 

  34. LeFurgey A, Davilla SD, Kopf DA et al (1992) Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology. J Microsc (Oxford) 165:191–223

    Article  CAS  Google Scholar 

  35. Pogorelov A, Pogorelov V, Repin NV (1994) Quantitative biological electron probe microanalysis with a wavelength-dispersive spectrometer. Scanning Microsc Suppl 8:101–108

    CAS  PubMed  Google Scholar 

  36. Wróblewki R, Roomans GM, Ruusa J et al (1979) Elemental analysis of histochemically defined cells in the earthworm Lumbricus terrestris. Histochemistry 61:167–176

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of the recently deceased Dr Lahja Sevéus, who contributed significantly to the development of the quantitative techniques reviewed here. The original work on which this chapter is based was carried out while the authors were employed at the Department of Medical Cell Biology, Uppsala University. The studies reviewed here were supported by the Swedish Research Council, the Cystic Fibrosis Research Trust, the Swedish Heart-Lung Foundation, and the Swedish Association for Cystic Fibrosis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Roomans, G.M., Dragomir, A. (2014). X-Ray Microanalysis in the Scanning Electron Microscope. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics