Skip to main content

Aromatic L-Amino Acid Decarboxylase

Biochemistry and Functional Significance

  • Protocol
Neurotransmitter Enzymes

Part of the book series: Neuromethods ((NM,volume 5))

Abstract

Monamines derived from the decarboxylation of aromatic L-amino acids are formed by every type of living organism from bacteria to plants and animals. These compounds and their derivatives are important regulatory substances. Although consensus has been difficult to reach, it appears that only two enzymes catalyze the decarboxylation of aromatic amino acids in mammals. first, histidine decarboxylase (EC 4.1.1.22), a very specific enzyme; and second, aromatic L-amino acid decarboxylase (EC 4.1.1.28) (AADC), a very nonspecific enzyme. The notable features of AADC are as follows. The enzyme is found in tissues where a functional role is obvious, such as catecholaminergic neurons, serotonergic neurons, the adrenal medulla, pineal gland, and enterochromaffin tissue. The highest levels of AADC, however, are found in tissues such as the kidney, liver, and gastrointestinal tract where its functional status is unclear. In those tissues in which AADC is clearly functional, it is assumed the enzyme is present in massive excess relative to the activity of other monoamine enzymes. Thus, the prevailing concept has been that AADC is not rate-limiting in monoamine synthesis. The enzyme does not appear to be under metabolic control. In fact, the Michaelis constant of the enzyme for even its best substrates is several orders of magnitude greater than the endogenous concentration of those amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aures D. and Hakanson R (1971) Histidine Decarboxylase, in Methods in Enzymology, Vol 18, pt B (Colowick S. P. and Kaplan N O., eds ), Academic, New York

    Google Scholar 

  • Aures D, Fleming R, and Hakanson R (1968a). Separation and detection of biogenic amines by thin-layer chromatography J Chromatogr. 33, 480–493

    PubMed  CAS  Google Scholar 

  • Aures D, Hakanson R, and Clark W. G. (1970) Histidine Decarboxylase and Dopa Decarboxylase, in Handbook of Neurochemistry (Lajtha A., ed.), pp 165–196, Plenum, New York.

    Google Scholar 

  • Aures D., Hakanson R, and Schauer A (1968b) Histidine decarboxylase and dopa decarboxylase in the rat stomach. Properties and cellular localization. Eur J. Pharmacol. 3, 217–234.

    PubMed  CAS  Google Scholar 

  • Awapara J. and Saine S (1975) Fluctuations in dopa decarboxylase activity with age. J Neurochem. 24, 817–818

    PubMed  CAS  Google Scholar 

  • Awapara J., Perry T. L, Hanly C, and Peck E. (1964) Substrate specificity of dopa decarboxylase Clin. Chim Acta 10, 286–289.

    PubMed  CAS  Google Scholar 

  • Awapara J, Sandman R P, and Hanly C (1962) Activation of dopa decarboxylase by pyridoxal phosphate. Arch Biochem Biophys 98, 520–525.

    PubMed  CAS  Google Scholar 

  • Axelrod J., Saavedra J. and Usdin E. (1976) Trace Amines in the Brain, in Psychopharmacology Vol 1 (Usdin E. and Sandler M., eds.), pp. 1–20. Marcel, New York

    Google Scholar 

  • Barboni E, Born Voltattorni C, D’Erme M, Fiori A., Minelli A., and Rosei A (1982) Inhibitors binding to AADC Life Sci. 31, 1519–1524.

    PubMed  CAS  Google Scholar 

  • Bartholini J., Constantinidis J., Puig M, Tissot R, Pletscher A (1975) The stereoisomers of 3,4-dihydroxyphenylserine as precursors of norepinephrme. J. Pharmacol Exp Ther 193, 523–532.

    PubMed  CAS  Google Scholar 

  • Bartholini G., Constantinidis J., Tissot R., and Pletscher A (1971) Formation of monoamines from various amino acids m the brain after inhibition of extracerebral decarboxylase Biochem. Pharmacol 20, 1243–1247.

    PubMed  CAS  Google Scholar 

  • Beaven M. A, Sol1 A H., and Lewin K J. (1982) Histamine synthesis by intact mast cells from canine fundic mucosa and liver. Gastroenterology 82, 254–262.

    PubMed  CAS  Google Scholar 

  • Beaven M. A., Wilcox G., and Terpstra G. K. (1978) A microprocedure for the measurement of 14CO2 release from [14C]carboxy-labeled amino acids Anal Biochem 84, 638–641.

    PubMed  CAS  Google Scholar 

  • Bender D. A. and Coulson W. F. (1977) AADC: pH dependence of substrates and inhibitors. Biochem. Soc. Trans 5, 1353–1356.

    PubMed  CAS  Google Scholar 

  • Bender D. A. and Coulson W. F. (1972) Variations in AADC activity towards DOPA and 5HTP caused by pH changes and denaturation J. Neurochem. 19, 2801–2810

    PubMed  CAS  Google Scholar 

  • Bennett D. S and Giarman N J. (1965) Schedule of appearance of serotonin and associated enzyme in the developing rat brain. J Neurochem. 12, 911–918.

    PubMed  CAS  Google Scholar 

  • Bergmark J, Granerus G., and Henningsson S. (1976) Histamine metabolism of the guinea pig gastric mucosa. J. Physiol. (Lond.) 257, 419–431.

    CAS  Google Scholar 

  • Bertler A. and Rosengren E. (1959a) On the distribution in brain monoamines and of enzymes responsible for their formation. Experientia 15, 382–384.

    PubMed  CAS  Google Scholar 

  • Bertler A. and Rosengren E (1959b) Occurrence and distribution of catecholamines in brain Acta Physiol. Scand. 47, 350–361

    PubMed  CAS  Google Scholar 

  • Bertler A., Falck B, and Rosengren E (1963) The direct demonstration of a barrier mechanism in brain capillaries. Acta Pharmacol Toxicol 20, 317–321.

    CAS  Google Scholar 

  • Bey P., Jung M. J, Koch-Weser J, Palfreyman M G, Sjoerdsma A., Wagner J., and Zraika M. (1980) Further studies on the inhibition of monoamine synthesis by monofluoromethyldopa. Br J. Pharmacol 70, 571–576.

    PubMed  CAS  Google Scholar 

  • Bianchine J. R. (1980) Drugs For Parkinson’s Disease, in The Pharmacologic Basis of Therapeutics (Gilman A. G., Goodman L. S., Gilman A., eds.), 6th ed, pp. 482–483, Macmillan, New York

    Google Scholar 

  • Blaschko H. (1939) The specific action of L-dopa decarboxylase J Physiol (Lond.) 96, 50P–51P.

    Google Scholar 

  • Blaschko H. (1942) The activity of L-dopa decarboxylase. J Physiol (Lond.) 101, 337–349.

    CAS  Google Scholar 

  • Blaschko H. (1945) The amino acid decarboxylases of mammalian tissues Adv. Enzymol. 5, 67–85.

    CAS  Google Scholar 

  • Blaschko H. (1950) Substrate specificity of amino acid decarboxylases Biochim Biophys Acta 4, 130–137.

    CAS  Google Scholar 

  • Blaschko H. and Holton P. (1950) Enzymic formation of ortho-tyramine. J Physiol. (Lond.) 110, 482–487

    CAS  Google Scholar 

  • Blaschko H., Burn J H., and Langemann H. (1950) The formation of noradrenaline from dihydroxyphenylserine Br. J. Pharmacol 5, 431–437.

    CAS  Google Scholar 

  • Blaschko H., Hagen P., and Welch A. D. (1955) Observations on the intracellular granules of the adrenal medulla. J. Physiol. (Lond.) 129, 27–49.

    CAS  Google Scholar 

  • Blaschko H., Holton P, and Stanley G. H. S. (1949) Enzymic formation of pressor amines J. Physiol. (Lond ) 108, 427–439.

    CAS  Google Scholar 

  • Borri Voltattorni C, Minelli A., and Borri P. (1977a) Interaction of L-α-methyl-α-hydrazino-3,4-dihydroxyphenylpropionic acid with dopa decarboxylase from pig kidney. FEBS Lett 75, 277–280.

    PubMed  CAS  Google Scholar 

  • Borri Voltattorni C., Minelli A., and Borri P. (1977b) Interaction of N-(d,l-seryl)N′-(2,3,4-trihydroxybenzyl)-hydrazine with dopa decarboxylase from pig kidney. Experientia 33, 158–160.

    PubMed  CAS  Google Scholar 

  • Borri Voltattorni C, Minelli A., and Borri P. (1981) The interaction of 2,3,4-trihydroxybenzylhydraine with dopa decarboxylase from pig kidney Life Sci 28, 103–108.

    PubMed  CAS  Google Scholar 

  • Borri Voltattorni C., Minelli A, Cirotto C., Barra D., and Turano C. (1982) Subunit structure of dopa decarboxylase from pig kidney. Arch Biochem. Biophys 217, 58–64.

    Google Scholar 

  • Borri Voltattorni C, Minelli A., and Dominici P. (1983) Interaction of aromatic amino acids in D and L forms with DOPA decarboxylase from pig kidney. Biochemistry 22, 2249–2254.

    Google Scholar 

  • Borri Voltattorni C, Minelli A., and Turano C. (1971) Spectral properties of the coenzyme bound to dopa decarboxylase from pig kidney. FEBS Lett. 17, 231–235.

    CAS  Google Scholar 

  • Borri Voltattorni C, Minelli A., Vecchini P., Fiori A, and Turano C. (1979) Purification and characterization of dopa decarboxylase from pig kidney Eur J Biochem 93, 181–188.

    CAS  Google Scholar 

  • Bosin T. R., Baldwin J. R., and Maickel R. P. (1978) Inhibition of dopa decarboxylation by analogues of tryptophan. Biochem Pharmacol. 27, 1289–1291

    PubMed  CAS  Google Scholar 

  • Bosin T. R, Buckpitt A. R, and Maickel R. P. (1974) Substrate specificity of AADC. Life Sci. 14, 899–908.

    PubMed  CAS  Google Scholar 

  • Bossa F., Martini F., Barra D., Borri Voltattorni C., Minelli A., and Turano C. (1977) The chymotryptic phosphopyridoxal peptide of dopa decarboxylase from pig kidney. Biochem. Biophys. Res Commun 78, 177–184.

    PubMed  CAS  Google Scholar 

  • Bouchard S. and Roberge A. G. (1979) Biochemical properties and kinetic parameters of DOPA-5HTP decarboxylase in brain, liver, and adrenals of cat. Can. J Biochem. 57, 1014–1018.

    PubMed  CAS  Google Scholar 

  • Boulton A A. (1978) The tyramines: Functionally significant biogenic amines or metabolic accidents? Life Sci 23, 659–672.

    PubMed  CAS  Google Scholar 

  • Bowsher R. R. and Henry D. P. (1983) Decarboxylation of p-tyrosine: A potential source of p-tyramine in mammalian tissues. J. Neurochem. 40, 992–1002.

    PubMed  CAS  Google Scholar 

  • Bowsher R. R., Verburg K. M., and Henry D. P. (1983) Rat histamine N-methyltransferase: Quantification, &sue distribution, purification, and immunologic properties J. Biol. Chem. 258, 12215–12220.

    PubMed  CAS  Google Scholar 

  • Bulbring E. and Gershon M. D. (1967) 5-Hydroxytryptamine participation in the vagal inhibitory innervation of the stomach. J Physiol (Lond.) 192, 823–846.

    CAS  Google Scholar 

  • Buzard J. A. and Nytch P. D. (1957) Some characteristics of rat kidney 5HTP decarboxylase. J Biol. Chem 227, 225–230.

    PubMed  CAS  Google Scholar 

  • Calne D. B., Teychenne P. F., and Pfeiffer R F. (1977) Treatment of parkinsonism. Adv. Exp Med Biol. 90, 49–54

    PubMed  CAS  Google Scholar 

  • Carlsson A. and Lindquist M. (1962) In vivo decarboxylation of α-methyldopa and α-methyl-metatyrosine. Acta Physiol Scand 54, 87–94

    PubMed  CAS  Google Scholar 

  • Cavalli-Sforza L. L, Santachiara S. A, and Wang L. (1974) Electrophoretic study of 5HTP decarboxylase from brain and liver in several species. J Neurochem 23, 629–634

    PubMed  CAS  Google Scholar 

  • Charteris A. and John R. (1975) An investigation of the assay of dopamine using trinitrobenzenesulfonic acid Anal Biochem. 66, 365–371

    PubMed  CAS  Google Scholar 

  • Christenson J G., Dairman W., and Udenfriend S (1970) Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney. Arch Biochem. Biophys 141, 356–367

    PubMed  CAS  Google Scholar 

  • Christenson J G., Dairman W., and Udenfriend S. (1972) On the identity of DOPA decarboxylase and 5HTP decarboxylase. Proc. Natl. Acad. Sci. USA 69, 343–374.

    PubMed  CAS  Google Scholar 

  • Clark W. G. (1959) Studies on inhibition of dopa decarboxylase in vitro and in vivo. Pharmacol. Rev. 11, 330–349.

    PubMed  CAS  Google Scholar 

  • Clark W. G. and Pogrund R. S (1961) Inhibition of dopa decarboxylase in vitro and in VIVO. Circ. Res 9, 721–732.

    PubMed  CAS  Google Scholar 

  • Clark C. T., Weissbach H., and Udenfriend S (1954) 5-Hydroxy-tryptophan decarboxylase. Preparation and properties. J Biol Chem 210, 139–148

    PubMed  CAS  Google Scholar 

  • Corgier M. and Pacheco H (1975) Purification and properties of aromatic L-amino acid decarboxylase of rat brain. Biochimie 57, 1005–1017.

    PubMed  CAS  Google Scholar 

  • Costa M. and Furness J. B (1979) On the possibility that an indoleamine is a neurotransmitter in the gastrointestinal tract. Biochem Pharmacol 28, 565–571.

    PubMed  CAS  Google Scholar 

  • Coulson W F., Henson G., and Jepson J B (1968) The specificity of rat liver aromatic amino acid decarboxylase. Biochem J. 107, 17P–18P

    CAS  Google Scholar 

  • Culvenor A. J. and Jarrott B. (1979) Reduction of AADC protein in rats after chrome administration of alphamethyldopa Mol. Pharmacol. 15, 86–98.

    PubMed  CAS  Google Scholar 

  • Dairman W., Horst W D., Marchelle M E., and Bautz G. (1975) The proportionate loss of DOPA and 5HTP decarboxylating activity in rat central nervous system following intracisternal administration of 5,6-dihydroxytryptamine or 6-hydroxydopamine. J Neurochem 24, 619–623.

    PubMed  CAS  Google Scholar 

  • DaPrada M. (1977) Dopamine Content and Synthesis in Retina and N. Accumbens Septi. Pharmacological and Light-Induced Modifications in Advances in Biochemical Psychopharmacology, Vol. 16 (Costa E and Gessa G. L, eds ), pp. 311–319, Raven, New York.

    Google Scholar 

  • David J C., Dairman W, and Udenfriend S. (1973) On the significance of the large amounts of non-neuronal AADC in kidney and liver. Pharmacologist 15, 246.

    Google Scholar 

  • David J. C., Dairman W, and Udenfriend S. (1974) On the importance of decarboxylation in the metabolism of phenylalanine, tyrosine, and tryptophan. Arch. Biochem. Biophys 160, 561–568

    PubMed  CAS  Google Scholar 

  • Davis V E. and Awapara J. (1960) A method for the determination of some amino acid decarboxylases J Biol. Chem 235, 124–127

    PubMed  CAS  Google Scholar 

  • D’Erme M., Rosei M A, Fiori A., and DiStazio G. (1980) Assay of AADC by high performance liquid chromatography. Anal Biochem. 104, 59–61.

    PubMed  Google Scholar 

  • Dietrich L. S (1953) A rapid method for the determination of dopa decarboxylase in animal tissues. J. Biol Chem. 204, 587–591.

    PubMed  CAS  Google Scholar 

  • Dreyfus C. F., Bornstein M. B, and Gershon M. D. (1977) Synthesis of serotonin by neurons of the myenteric plexus in situ and in organotypic tissue culture Brain Res. 128, 125–139.

    PubMed  CAS  Google Scholar 

  • Dyck L E., Yang C. R, and Boulton A. A (1983) The biosynthesis of p-tyramine, m-tyramine, and β-phenylethylamine by rat striatal slices. J Neurosci Res 10, 211–220.

    PubMed  CAS  Google Scholar 

  • Eranko O. (1978) Small intensely fluorescent (SIF) cells and nervous transmission in sympathetic ganglia. Ann Rev Pharmacol. Toxicol 18, 417–430

    CAS  Google Scholar 

  • Fellman J H. (1959) Purification and properties of adrenal L-dopa decarboxylase. Enzymologia 20, 366–376.

    PubMed  CAS  Google Scholar 

  • Ferrini R. and Glasser A (1964) In vitro decarboxylation of new phenylalanine derivatives Biochem. Pharmacol. 13, 798–800.

    PubMed  CAS  Google Scholar 

  • Florkin M. and Stotz E. H, eds. (1964) Comprehensive Biochemistry, Vol 13, Report of the Commission on Enzymes of the International Union of Biochemistry, pp. 122–123, Elsevier, New York

    Google Scholar 

  • Florkin M. and Stotz E H., eds. (1973) Comprehensive Biochemistry, Vol. 13, Enzyme Nomenclature, pp. 272–273, Elsevier, New York.

    Google Scholar 

  • Fozard J. R. (1982) Highly potent irreversible inhibitors of AADC. Trends Pharmacol. Sci. 3, 429

    CAS  Google Scholar 

  • Fozard J. R., Spedding M, Palfreyman M. G., Wagner J, Mohring J., and Koch-Weser J, (1980) Depression of sympathetic nervous function by D,L-α-monofluoromethyl dopa, an enzyme-activated, irreversible inhibitor of AADC J. Cardiovasc. Pharmacol. 2, 229–245.

    PubMed  CAS  Google Scholar 

  • Frohlich E. D. (1980) Methyldopa: Mechanisms and treatment 25 years later. Arch. Intern. Med. 140, 954–959.

    PubMed  CAS  Google Scholar 

  • Fujita T. (1977) Concepts of paraneurons. Arch Histol. Jpn. 40, 1–12.

    PubMed  CAS  Google Scholar 

  • Fujita T. and Kobayashi S. (1979) Current views on the paraneurone concept. Trends in Neurosci. 2, 27–30.

    Google Scholar 

  • Furness J. B., Costa M., and Howe P R. C. (1980) Intrinsic Amine-Handling Neurons in the Intestine, in Advances in Biochemical Psychopharmacology (Eranko O, Soinila S. and Paivarinta H., eds.), Vol 25, Raven, New York.

    Google Scholar 

  • Gardner C. R. and Richards H. H (1981) Use of D,L-alpha-monofluoro-methyldopa to distinguish subcellular pools of AADC in mouse brain. Brain Res 216, 291–298

    PubMed  CAS  Google Scholar 

  • Gershon M. D. and Ross L. L. (1966a) Radioisotopic studies of the binding exchange and distribution of 5-hydroxytryptamine synthesized from its radioactive precursor. J. Physiol. (Lond ) 186, 451–476.

    CAS  Google Scholar 

  • Gershon M. D. and Ross L. L (1966b) Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J. Physiol. (Lond.) 186, 477–492.

    CAS  Google Scholar 

  • Gershon M. D, Dreyfus C. F., Pickel V. M., Joh T. H., and Reis D. J. (1977) Serotonergic neurons in the peripheral nervous system: Identification in gut by histochemical localization of tryptophan hydroxylase. Proc. Natl Acad Set. USA 74, 3086–3089.

    CAS  Google Scholar 

  • Gershon M. D., Robinson R G., and Ross L. L. (1976) Serotonin accumulation in the guinea-pig myenteric plexus. Ion dependence, structure-activity relationship and the effect of drugs. J Pharmacol Exp. Ther. 198, 548–561

    PubMed  CAS  Google Scholar 

  • Goldstein M., Anagnoste B., Battista A. F., Owen W. S, and Nakatani S. (1969) Studies of amines in the striatum in monkeys with nigral lesions. J. Neurochem. 16, 645–653.

    PubMed  CAS  Google Scholar 

  • Goldstein M., Fuxe K., and Hokfelt T. (1972) Characterization and tissue localization of catecholamine-synthesizing enzymes. Pharmacol Rev 24, 293–295.

    PubMed  CAS  Google Scholar 

  • Gonnard P. and Gamier M. (1966) Multiplicity of decarboxylases for cyclic amino acids. Bull. Soc. Chim Biol 48, 225–238.

    PubMed  CAS  Google Scholar 

  • Hagen P. (1962) Observations on the substrate specificity of dopa decarboxylase from ox adrenal medulla, human phaeochromocytoma and human argentaffinoma. Br. J. Pharmacol 18, 175–182

    CAS  Google Scholar 

  • Hakanson R. and Owman C. (1966) Distribution and properties of amino acid decarboxylases in gastric mucosa. Biochem. Pharmacol 15, 489–499.

    PubMed  CAS  Google Scholar 

  • Hakanson R. and Owman C. (1967) Concomitant histochemical demonstration of histamine and catecholamines in enterochromaffin-like cells of gastric mucosa Life Sci. 6, 759–766

    PubMed  CAS  Google Scholar 

  • Hardebo J. E. and Owman C. (1980) Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann. Neural. 8, 1–11.

    CAS  Google Scholar 

  • Hardebo J. E., Edvinsson L., Owman C h., and Rosengren E. (1977) Quantitative evaluation of the blood-brain barrier capacity to form dopamine from circulating L-dopa Acta Physiol. Scand. 99, 377–384.

    PubMed  CAS  Google Scholar 

  • Hardebo J. E., Emson P. C., Falck B., Owman C h., and Rosengren E (1980) Enzymes related to monoamine transmitter metabolism in brain microvessels. J. Neurochem 35, 1388–1393.

    PubMed  CAS  Google Scholar 

  • Hartman W. J., Akawie R. I., and Clark W G. (1955) Competitive inhibition of dopa decarboxylase in vttro J. Biol. Chem 216, 507–529

    CAS  Google Scholar 

  • Henning M. (1975) Central Action of Alpha-Methyldopa, in Central Action of Drugs in Blood Pressure Regulation (Davies D. S and Reid J. L.,eds ), pp. 157–165, University Park, Baltimore.

    Google Scholar 

  • Hofstee B. H J. (1975) Fractionation of protein mixtures through differential adsorption on a gradient of substituted agaroses of increasing hydrophobicrty Prep Biochem 5, 7–19.

    PubMed  CAS  Google Scholar 

  • Hokfelt T., Fuxe K., and Goldstein M. (1973a) Immunohistochemical localization of AADC in central dopamine and 5-hydroxytryptamine nerve cell bodies of the rat. Bran Res 53, 175–180.

    CAS  Google Scholar 

  • Hokfelt T., Fuxe K, and Goldstein M. (197313) Immunohistochemical studies on monoamine-containing cell systems. Brain Res 62, 461–469.

    PubMed  CAS  Google Scholar 

  • Holtzin P (1959) Role of L-dopa decarboxylase in the biosynthesis of catecholamines in nervous tissue and the adrenal medulla. Pharmacol. Rev. 11, 317–329.

    Google Scholar 

  • Holtz P., Heise R, and Luedtke K. (1938) Enzymic destruction of L-dopa by the kidney. Arch. Exp Path Pharmakol. 191, 87–118.

    CAS  Google Scholar 

  • Inagaki C. and Tanaka C. (1978) Characteristics of enzymic decarboxylation of L-threo-3,4-dihydroxyphenylserine using hog renal AADC. Biochem. Pharmacol. 27, 1081–1086.

    PubMed  CAS  Google Scholar 

  • Iuvone P. M., Galli C. L., Garrison-Gund C. K., and Neff N H. (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202, 901–902.

    PubMed  CAS  Google Scholar 

  • Jaeger C. B, Albert V R, Joh T H., and Reis D. J. (1983a) AADC in the rat brain: Coexistance with vasopressin in small neurons of the suprachiasmatic nucleus Brain Res. 276, 362–366.

    PubMed  CAS  Google Scholar 

  • Jaeger C. B., Ruggiero D. A, Albert V. R., Park D. H., Joh T. H., and Reis D. J. (1984) AADC in the rat brain Immunocytochemical localization in neurons of the brain stem. Neuroscience 11, 691–713.

    PubMed  CAS  Google Scholar 

  • Jaeger C. B., Teitelman G, Joh T H, Albert V. R., Park D. H., and Reis D. J. (1983b) Some neurons of the rat central nervous system contain AADC but not monoamines. Science 219, 1233–1235.

    PubMed  CAS  Google Scholar 

  • Johnston C. A., Spinedi E., and Negro-Vilar A (1984) AADC activity in the rat median eminence, neuromtermediate lobe and anterior lobe of the pituitary Neuroendocrinology 39, 54–59.

    PubMed  CAS  Google Scholar 

  • Jones R. S. G., Juorio A V, and Boulton A. A. (1983) Changes in levels of dopamine and tyramine in the rat caudate nucleus following alterations of impulse flow in the nigrostriatal pathway. J. Neurochem 40, 396–401.

    PubMed  CAS  Google Scholar 

  • Jung M. J., Hornsperger J-M., Gerhart F., and Wagner J. (1984) Inhibition of AADC and depletion of biogenic amines in brain of rats treated with a-monofluoromethyl-p-tyrosine Similitudes and differences with the effects of α-monofluoromethyldopa. Biochem. Pharmacol 33, 327–330.

    PubMed  CAS  Google Scholar 

  • Jung M. J., Palfreyman M. G, Wagner J., Bey P., Ribereau-Gayon G., Zraika M., and Koch-Weser J (1979) Inhibition of monoamine synthesis by irreversible blockage of AADC with α-monofluoromethyl-dopa. Life Sci 24, 1037–1042

    PubMed  CAS  Google Scholar 

  • Juorio A. V. (1979) Drug-induced changes in the formation, storage, and metabolism of tyramine in the mouse Br J. Pharmacol. 66, 377–384.

    PubMed  CAS  Google Scholar 

  • Juorio A. V. (1983) The effect of some decarboxylase inhibitors on striatal tyramines in the mouse. Neuropharmacology 22, 71–73.

    PubMed  CAS  Google Scholar 

  • Juorio A. V. and Jones R S G. (1981) The effect of mesencephalic lesions on tyramine and dopamine in the caudate nucleus of the rat J Neurochem 36, 1898–1903

    PubMed  CAS  Google Scholar 

  • Karoum F, Potkin S. G., and Wyatt R. J. (1980) Quantitation and Metabolism of Phenylethylamine and Tyramines Three Isomers in Humans, in Noncatecholic Phenylethylumines, (Mosnain A. D and Wolf M. E., eds.), Marcel Dekker, New York.

    Google Scholar 

  • Kato S, Nakamura T., and Negishi K. (1980) Postnatal development of dopaminergic cells in the rat retina. J Comp Neural 191, 227–236.

    Google Scholar 

  • Klingman G. I. (1965) Catecholamine levels and dopa-decarboxylase activity in peripheral organs and adrenergic tissues in the rat after ilmmunosympathectomy J Pharmacol. Exp Ther 148, 14–21

    PubMed  CAS  Google Scholar 

  • Knox W. E. (1951) The oxidation in liver of L-tyrosine to acetoacetate through p-hydroxyphenylpyruvate and homogentisic acid Biochem J. (Lond.) 49, 686–693

    CAS  Google Scholar 

  • Kuntzman R., Shore P A, Bogdanski D., and Brodie B. B. (1961) Micro-analytical procedures for fluorometric assay of brain dopa-5HTP decarboxylase, norepinephrine and serotonin, and a detailed mapping of decarboxylase activity in brain J. Neurochem 6, 226–232

    CAS  Google Scholar 

  • Laduron P and Belpaire F (1968) A rapid assay and partial purification of dopa decarboxylase Anal Biochem. 26, 210–218

    PubMed  CAS  Google Scholar 

  • Lamprecht F and Coyle J T (1972) Dopa decarboxylase in the developing rat brain. Brain Res 41, 503–506.

    PubMed  CAS  Google Scholar 

  • Lancaster G. A. and Sourkes T. L (1972) Purrflcation and properties of hog-kidney dopa decarboxylase Can J. Biochem. 50, 791–797

    PubMed  CAS  Google Scholar 

  • Landon M. (1977) A method for the direct detection of AADC in electrophoretic media. Anal Biochem 77, 293–297

    PubMed  CAS  Google Scholar 

  • Langelier P, Parent A., Poirier L J. (1972) Decarboxylase activity of the brain capillary walls and parenchyma in the rat, cat and monkey Brain Res 45, 622–629

    PubMed  CAS  Google Scholar 

  • Langemann H. (1958) 5-Hydroxytryptophan Decarboxylase, in 5-Hydroxytryptamine (Lewis G P, ed.), pp 153–157, Pergamon, Oxford.

    Google Scholar 

  • Levitt M., Spector S, Sjoerdsma A, and Udenfriend S. (1965) Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J. Pharmacol. Exp. Ther 148, 1–8.

    PubMed  CAS  Google Scholar 

  • Libet B. (1977) The Role SIF Cells Play in Ganglionic Transmission, in Advances in Biochemical Psychopharmacology (Costa E. and Gessa G. L., eds.) Vol. 16, 541–546, Raven, New York.

    Google Scholar 

  • Lloyd K. G. and Hornykiewicz O. (1970) Occurrence and distribution of dopa decarboxylase in the human brain. Brain Res. 22, 426–428.

    PubMed  CAS  Google Scholar 

  • Lloyd K. G. and Hornykiewicz O. (1972) Occurrence and distribution of AADC in the human brain. J. Neurochem. 19, 1549–1559

    PubMed  CAS  Google Scholar 

  • Lovenberg W., Barchas J., Weissbach H., and Udenfriend S. (1963) Characteristics of the inhibition of AADC by α-methylamino acids. Arch. Biochem. Biophys. 103, 9–14.

    PubMed  CAS  Google Scholar 

  • Lovenberg W., Weissbach H, and Udenfriend S. (1962) Aromatic L-amino acid decarboxylase J. Biol. Chem. 237, 89–93

    PubMed  CAS  Google Scholar 

  • MacKay A. V. P., Davies P., Dewar A. J., and Yates C M. (1978) Regional distribution of enzymes associated with neurotransmission by monoamines, acetylcholine and gaba in the human brain. J Neurochem. 30, 827–839

    PubMed  CAS  Google Scholar 

  • Mackowiak E. D., Hare T. A., and Vogel W. H. (1972) Measurement of AADC—a technical comment. Biochem. Med. 6, 562–567.

    PubMed  CAS  Google Scholar 

  • Maneckjee R. and Baylin S. B. (1983) Use of radiolabeled monofluoro-methyldopa to define the subunit structure of human L-DOPA decarboxylase. Biochemistry 22, 6058–6063.

    PubMed  CAS  Google Scholar 

  • Maycock A. L., Aster S D., and Patchett A. A. (1980) Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine. Biochemistry 19, 709–718.

    PubMed  CAS  Google Scholar 

  • McCaman M W., McCaman R E., and Lees G. J, (1972) Liquid cation exchange—a basis for sensitive radiometric assays for AADC. Anal. Biochem. 45, 242–252.

    PubMed  CAS  Google Scholar 

  • McCaman R. E., McCaman M. W., Hunt J. M., and Smith M. S (1965) Microdetermination of monoamine oxidase and 5HTP decarboxylase activities in nervous tissues. J Neurochem. 12, 15–23.

    PubMed  CAS  Google Scholar 

  • Melamed E., Hefti F, Pettibone D J., Liebman J., and Wurtman R. J. (1981) AADC in rat corpus striatum: Implications for action of L-dopa in Parkinsonism Neurology 31, 651–655.

    PubMed  CAS  Google Scholar 

  • Melamed E., Hefti F., and Wurtman R. J. (1980) DOPA and 5HTP decarboxylase activities in rat striatum: Effect of selective destruction of dopaminergic or serotoninergic input. J. Neurochem. 34, 1753–1756.

    PubMed  CAS  Google Scholar 

  • Minelli A., Charteris A. T., Borri Voltattorni C, and John R. A (1979) Reactions of dopa decarboxylase with dopa. Biochem J. 183, 361–368.

    PubMed  CAS  Google Scholar 

  • Morgan W. and Kamp C W. (1980) A GABAergic influence on the light-induced increase in dopamine turnover in the dark-adapted rat retina in vivo J. Neurochem 34, 1082–1086.

    CAS  Google Scholar 

  • Morgan W.W. and Kamp C W (1982) Postnatal development of the light response of the dopaminergic neurons in the rat retina J Neurochem. 39, 283–285.

    PubMed  CAS  Google Scholar 

  • Muller B., Harris T., Borri Voltattorni C., and Bell C (1984) Distribution of neurons containing dopa decarboxylase and dopamine-β-hydroxylase in some sympathetic ganglia of the dog: A quantitative study Neuroscience 11, 733–740.

    PubMed  CAS  Google Scholar 

  • Nagatsu, T. (1973) Biochemistry of Catecholamines, pp. 50–60, University Park, Baltimore

    Google Scholar 

  • Nagatsu T., Yamamoto T, and Kato T. (1979) A new and highly sensitive voltammetric assay for AADC activity by high-performance liquid chromatography. Anal Biochem. 100, 160–165.

    PubMed  CAS  Google Scholar 

  • Neff N. H., Karoum F., and Hadjiconstantinou N. (1983) Dopamine-containing small intensely fluorescent cells and sympathetic ganglion function. Fed Proc. 42, 3009–3011

    PubMed  CAS  Google Scholar 

  • Nomenclature Commission of the lnternational Union of Biochemistry (1979) Enzyme Nomenclature, 1978, pp. 920–923, Academic, New York.

    Google Scholar 

  • Oie H. K., Gazdar A. F., Minna J. D., Weir G. C., and Baylin S. B. (1983) Clonal analysis of insulin and somatostatin secretion and dopa decarboxylase expression by a rat islet cell tumor Endocrinology 112, 1070–1075.

    PubMed  CAS  Google Scholar 

  • Okuno S. and Fujisawa H. (1983) Accurate assay of dopa decarboxylase by preventing nonenzymatic decarboxylation of dopa. Anal. Biochem. 129, 412–415.

    PubMed  CAS  Google Scholar 

  • O’Leary M. H. and Baughn R. L (1975) New pathway for metabolism of dopa. Nature 253, 52–53.

    PubMed  Google Scholar 

  • O’Leary M. H. and Baughn R. L. (1977) Decarboxylation-dependent transamination catalyzed by mammalian dopa decarboxylase. J. Biol Chem. 252, 7168–7173.

    PubMed  Google Scholar 

  • Pahlman S., Rosengren J., and Hjerten S (1977) Hydrophobic interaction chromatography on uncharged Sepharose derivatives J. Chromatogr. 131, 99–108.

    PubMed  CAS  Google Scholar 

  • Palfreyman M. G., Danzin C., Bey P., Jung M J., Ribereau-Gayon G., Aubry M, Vevert J. P., and Sjoerdsma A. (1978) α-Difluoromethyl dopa, a new enzyme-activated irreversible inhibitor of AADC. J Neurochem. 31, 922–932.

    Google Scholar 

  • Pearse A. G. (1974) The apud cell concept and its implication in pathology. Pathol Ann. 9, 27–34.

    CAS  Google Scholar 

  • Pearse A. G E (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the apud series and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17, 303–313

    PubMed  CAS  Google Scholar 

  • Porter C.C. (1973) Inhibitors of AADC-their biochemistry. Adv Neural 2, 37–58.

    CAS  Google Scholar 

  • Radola B. J. (1973) Analytical and preparative isoelectric focusing in gel-stabilized layers Ann. NY Acad. Sci. 209, 127–143.

    PubMed  CAS  Google Scholar 

  • Rahman M. K. and Nagatsu T. (1982) Demonstration of AADC activity in human brain with L-DOPA and 5HTP as substrates by high-performance liquid chromatography with electrochemical detection. Neurochem. lnt. 4, 1–6.

    CAS  Google Scholar 

  • Rahman M. K., Nagatsu T., and Kato T (1980) New and highly sensitive assay for 5HTP decarboxylase activity by high-performance liquid chromatography-voltammetry. J Chromatogr. 221, 265–270.

    PubMed  CAS  Google Scholar 

  • Rahman M. K., Nagatsu T., and Kato T. (1981) Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with DOPA and 5HTP as substrates. Biochem. Pharmacol. 30, 645–649.

    PubMed  CAS  Google Scholar 

  • Rahman M K., Nagatsu T., Sakuri T, Hori S., Abe M., and Matsuda M. (1982) Effect of pyrldoxal phosphate deficiency on AADC activity with DOPA and 5HTP as substrates in rats. Jpn J Pharmacol 32, 803–811

    PubMed  CAS  Google Scholar 

  • Reichlin S. (1981) Neuroendocrinology, in Textbook of Endocrinology, 6th ed. (Williams R. H, ed.), pp. 625–628, Saunders, Philadelphia.

    Google Scholar 

  • Reymond M J. and Porter J. C. (1982) Hypothalamic secretion of dopamine after inhibition of AADC activity. Endocrinology 111, 1051–1056.

    PubMed  CAS  Google Scholar 

  • Ribereau-Gayon G, Danzin C., Palfreyman M. G., Aubry M., Wagner J., Metcalf B. W, and Jung M. J. (1979) In vitro and in vivo effects of α-acetylenic dopa and α-vinyl dopa on AADC. Biochem Pharmacol 28, 1331–1335.

    PubMed  CAS  Google Scholar 

  • Ribereau-Gayon G, Palfreyman M. G., Zraika M., Wagner J., and Jung M. J. (1980) Irreversible inhibition of AADC by α-difluoromethyl-DOPA and metabolism of the inhibitor. Biochem. Pharmacol. 29, 2465–2469

    PubMed  CAS  Google Scholar 

  • Roberge A. G. and Poirier L. J (1973) Effect of chronically administered L-dopa on dopa/5HTP decarboxylase and tyrosine and tryptophan hydroxylases in cat brain. J Neural. Trans. 34, 171–185.

    CAS  Google Scholar 

  • Robins E, Robins J. M., Croninger A. B., Moses S G., Spencer J., and Hudgens R. W. (1967) The low level of 5HTP decarboxylase in human brain. Biochem. Med. 1, 240–251.

    CAS  Google Scholar 

  • Rosengren E. (1960) Are dopa decarboxylase and 5-hydroxytryptophan decarboxylase individual enzymes? Acta Physiol Scand. 49, 364–369.

    PubMed  CAS  Google Scholar 

  • Rudd E. A., Cunningham W. C., and Thanassi J W. (1979) Coenzyme-substrate adducts as inhibitors of mouse liver DOPA decarboxylase J Med. Chem. 22, 233–237.

    PubMed  CAS  Google Scholar 

  • Rudd E. A. and Thanassi J. W. (1981) Inhibition of AADC by coenzymeamino acid adducts. Biochemistry 20, 7469–7475.

    PubMed  CAS  Google Scholar 

  • Sacks W, Vogel W H, Nagatsu T, Lloyd K. G., and Sandler M. (1979) Round Table On Is There DOPA Decarboxylase in Human Brain?, in Catecholamines. Basic and Clinical Frontiers, Vol. 1 (Usdin E., Kopin I. J., and Barchas J, eds.), pp. 127–131, Pergamon, New York.

    Google Scholar 

  • Schayer R. W (1957) Histidine decarboxylase of rat stomach and other mammalian tissues. Am J. Physiol. 189, 533–536.

    PubMed  CAS  Google Scholar 

  • Schott H. F. and Clark W. G. (1952) Dopa decarboxylase inhibition through the interaction of coenzyme and substrate. J. Biol. Chem 196, 449–462

    PubMed  CAS  Google Scholar 

  • Segel I. H. (1975) Enzyme Kinetics, pp 41–43, Wiley, New York

    Google Scholar 

  • Sherald A F, Sparrow J. C, and Wright T R F (1973) A spectrophotometric assay for drosophilia dopa decarboxylase. Anal Biochem. 56, 300–305

    PubMed  CAS  Google Scholar 

  • Sims K. L and Bloom F E (1973) Rat brain DOPA and 5HTP decarboxylase activities. Differential effect of 6-hydroxydopamine Brain Res 49, 165–175.

    PubMed  CAS  Google Scholar 

  • Sims K. L, Davis G. A., and Bloom F E (1973) Activities of DOPA and 5HTP decarboxylases in rat brain Assay characteristics and distribution. J Neurochem. 20, 449–464

    PubMed  CAS  Google Scholar 

  • Snyder S. H. and Axelrod J. (1964) A sensitive assay for 5HTP decarboxylase. Biochem. Pharmacol 13, 805–806.

    PubMed  CAS  Google Scholar 

  • Soll A. H, Lewin K. J, and Beaven M A (1981) Isolation of histamine-containing cells from rat gastric mucosa. Biochemical and morphologic differences from mast cells. Gastroenterology 80, 717–727.

    PubMed  CAS  Google Scholar 

  • Somerville A. R (1964) The assay of AADC using radioactive substrates. Biochem. Pharmacol. 13, 1681–1683

    CAS  Google Scholar 

  • Sourkes T. L. (1954) Inhibition of dopa decarboxylase by derivatives of phenylalanine. Arch Biochem Biophys 51, 444–456

    PubMed  CAS  Google Scholar 

  • Sourkes T. L. (1965) The action of α-methyldopa in the brain. Br. Med. Bull. 20–21, 66–69

    Google Scholar 

  • Sourkes T. L (1966) Dopa decarboxylase: Substrates, coenzyme, inhibitors Pharmacol. Rev 18, 53–60.

    PubMed  CAS  Google Scholar 

  • Sourkes T. L (1972) Influence of specific nutrients on catecholamine synthesis and metabolism. Pharmacol. Rev 24, 349–352

    PubMed  CAS  Google Scholar 

  • Sourkes T L (1977) Enzymology of Aromatic Amino Acid Decarboxylases, in Structure and Function of Monoamine Enzymes (Usdin E, Weiner N, and Youdim M. B H, eds ), pp. 477–496, Dekker, New York.

    Google Scholar 

  • Sourkes T. L and D’Iorio (1963) Inhibitors of Catecholamine Metabolism, in Metabolic Inhibitors (Hochster R M and Quastel J H, eds.), pp 79–87, Academic, New York.

    Google Scholar 

  • Sourkes T., Heneage P., and Trano Y. (1952) Enzymatic decarboxylation of isomers and derivatives of dihydroxyphenylalanme. Arch. Biothem. Biophys, 40, 185–193

    CAS  Google Scholar 

  • Srinivasan K. and Awapara J (1978) Substrate specificity and other properties of dopa decarboxylase from guinea pig kidneys. Biochim Biophys Acta 526, 597–604.

    PubMed  CAS  Google Scholar 

  • Suer C. T., McKendall G., and Itskovitz H. D. (1984) Serotonin formation in nonblood-perfused rat kidneys J Pharmacol. Exp Ther 228, 53–56

    Google Scholar 

  • Streffer C. (1967) A method for determination of AADC activity. Biochim Biophys. Acta 139, 193–195

    PubMed  CAS  Google Scholar 

  • Szabo M., Nakawatase C., Kovathana N., and Frohman L. A. (1977) Effect of the dopa decarboxylase inhibitor MK486 on L-dopa-induced inhibition of prolactin secretion. Evidence for CNS participation in the L-dopa effects. Neuroendocrinology 24, 24–34.

    PubMed  CAS  Google Scholar 

  • Tabakoff B. and Black R F (1980) A high performance liquid chromatography method for measuring brain DOPA levels and dopamine synthesis rates. J Neurochem 34, 1707–1711.

    PubMed  CAS  Google Scholar 

  • Tanaka C. (1972) Low Activity of DOPA Decarboxylase in Cerebral Vessels of Spontaneously Hypertensive Rats, in Spontaneous Hypertenslon: Its Pathogenesis and Complications (Okamoto K., ed.), pp. 62–63, Springer-Verlag, Berlin.

    Google Scholar 

  • Taylor K. M. and Snyder S H (1972) Isotopic microassay of histamine, histidine decarboxylase and histamine methyltransferase in brain tissue. J. Neurochem. 19, 1343–1358

    PubMed  CAS  Google Scholar 

  • Tran V T. and Snyder S. H. (1981) Histidine decarboxylase J. Biol. Chern 56, 680–686.

    Google Scholar 

  • Udenfriend S., Clark C T., and Titus E. (1953) 5-Hydroxytryptophan decarboxylase. A new route of metabolism of tryptophan. J Amer Chem Soc. 75, 501–502

    CAS  Google Scholar 

  • Van Huysse J. W., Bowsher R. R., Henry D. P., and Willis L. R. (1984b) In vivo renal synthesis of para-tyramine in the rabbit. Fed. Proc. 43, 452.

    Google Scholar 

  • Van Huysse J W., Henry D. P., and Willis L. R. (1983a) Amine profile of rabbit and human urine. Fed. Proc. 42, 1132.

    Google Scholar 

  • Van Huysse J. W, Henry D. P., and Willis L. R (1983b) In vrvo synthesis para-tyramine by the mammalian kidney. Clin. Res. 31, 752A.

    Google Scholar 

  • Van Huysse J. W., Henry D. P., and Willis L. R. (1984a) Renal tubular secretions of para-tyramine and norepinephrine in the rabbit. Pharmacologist 26, 132

    Google Scholar 

  • Vogel W. H., McFarland H., and Prince L. N. (1970) Decarboxylation of dopa in various human adult and fetal tissues Biochem. Pharmacol. 19, 618–620.

    PubMed  CAS  Google Scholar 

  • Wade L. A. and Katzman R (1975) Rat brain regional uptake and decarboxylation of L-dopa following carotid injection. Am J. Physiol. 228, 352–359

    PubMed  CAS  Google Scholar 

  • Wang F. and Perlman R. L. (1981) Activity of AADC in pheochromocytoma cells. Biochem Pharmacol. 30, 3355–3359.

    PubMed  CAS  Google Scholar 

  • Waton N. G. (1956a) The effect of organic solvents on mammalian histidine decarboxylase. Biochem J 64, 318–322.

    PubMed  CAS  Google Scholar 

  • Waton N. G. (1956b) Studies on mammalian histidine decarboxylase. Br. J. Pharmacol 11, 119–127.

    CAS  Google Scholar 

  • Weiner R. I and Ganong W. F (1978) Role of monoamines and histamine in regulation of anterior pituitary secretion Physiol Rev. 58, 905–976.

    PubMed  CAS  Google Scholar 

  • Weissbach H., Lovenberg W., and Udenfriend S. (1960) Enzymatic decarboxylatron of α-methyl amino acids. Biochem. Biophys. Res. Commun. 3, 225–227.

    PubMed  CAS  Google Scholar 

  • Weissbach H., Lovenberg W., and Udenfriend S. (1961) Characteristics of mammalian histidine decarboxylating enzymes Biochim Biophys. Acta 50, 177–179.

    PubMed  CAS  Google Scholar 

  • Westermann E, Balzer H., and Knell J, (1958) Inhibition of serotonin synthesis by α-methyl-dopa. Arch. Exp. Path. Pharmakol. 234, 194–205.

    CAS  Google Scholar 

  • Wood W. I. (1976) Tables for the preparation of ammonium sulfate solutions. Anal. Biochem. 73, 250–257.

    PubMed  CAS  Google Scholar 

  • Wooten G. F. and Horne M. K (1982) A new autoradiographic approach for imaging forebrain dopamine distribution. Ann. Neurol 12, 163–168.

    PubMed  CAS  Google Scholar 

  • Wurtman R. J. and Watkins C J. (1977) Suppression of noradrenaline synthesis in sympathetic nerves by carbidopa, an inhibitor of peripheral dopa decarboxylase Nature 265, 79–80

    PubMed  CAS  Google Scholar 

  • Yuwiler A., Geller E., and Eiduson S. (1959) Studies on 5-hydroxytryptophan decarboxylase I. In vitro inhibition and substrate interaction. Arch. Biochem. Biophys. 80, 162–173.

    CAS  Google Scholar 

  • Yuwiler A., Geller E., and Eiduson S. (1960) Studies on 5-hydroxytryptophan decarboxylase. II. Additional inhibition studies and suggestions on the nature of the enzymic site. Arch. Biochem Biophys. 89, 143–147.

    PubMed  CAS  Google Scholar 

  • Zavisca F. G., Breau A. P., and Wurtman R. J. (1979) Mechanism of action of methyldopa in the rat: role of 3-O-methylated metabolites Circ Res. 45, 684–690.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Peter H. Yu

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Bowsher, R.R., Henry, D.P. (1986). Aromatic L-Amino Acid Decarboxylase. In: Boulton, A.A., Baker, G.B., Yu, P.H. (eds) Neurotransmitter Enzymes. Neuromethods, vol 5. Humana Press. https://doi.org/10.1385/0-89603-079-2:33

Download citation

  • DOI: https://doi.org/10.1385/0-89603-079-2:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-079-4

  • Online ISBN: 978-1-59259-610-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics