Skip to main content

Part of the book series: Neuromethods ((NM,volume 9))

Abstract

Changes of cerebral acid-balance, notably of extracellular pH (pHe), have long attracted the attention of physiologists. This is mainly because both cerebral blood flow (CBF) and pulmonary ventilation are exquisitely sensitive to alterations in pHe, whether these are caused by changes in pCO2 or by addition of strong acid or base to cerebral extracellular fluids (see reviews by Kuskchinsky and Wahl, 1978; Siesjö and Ingvar, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberti K. G. M. M. and Cuthbert C. (1982) The Hydrogen Ion in Normal Metabolism: A Review, in Metabolic Acidosis (Ciba Foundation Symposium 87) Pitman, London.

    Google Scholar 

  • Amman D., Lanter F., Steiner R. A., Schultero P., Shijo Y., and Simon W. (1981) Neutral carrier based hydrogen ion selective microelectrode’ for extra-and intracellular studies. Anal. Chem. 53, 2267–2269.

    Google Scholar 

  • Anrep G. V., Ayadi M. S., and Talaat M. (1936) A method for determination of carbon dioxide applicable to blood and tissues. J. Physiol. 86, 153–161.

    PubMed  CAS  Google Scholar 

  • Arieff A. I., Kerian A., Massry S. G., and DeLima J. (1976) Intracellular pH of brain: Alterations in acute respiratory acidosis and alkalosis. Am. J. Physiol, 230, 804–812.

    PubMed  CAS  Google Scholar 

  • Arnold J. B., Junck L., and Rottenberg D. A. (1985) In vivo measurement of regional brain and tumor pH using 14C dimethyloxazolidinedione and quantitative autoradiography. J. Cereb. Blood Flow Metab. 5, 369–375.

    PubMed  CAS  Google Scholar 

  • Astrup J., Heuser D., Lassen N. A, Nilsson B., Norberg K., and Sieslo B. K. (1978) Evidence Against H+ and K+ as Main Factors for the Control of Cerebral Blood Flow: A Microelectrode Study, in Cerebral Vascular Smooth Muscle and its Control Cuba Foundation Symposium 56 (new series), Elsevier/Excerpta Medics/North-Holland, Amsterdam.

    Google Scholar 

  • Bailey I. A., Williams S. R., Radda G. K., and Gadian D. G. (1981) Activity of phosphorylase in local ischemia in the rat heart. Biochem. J. 196, 171–178.

    PubMed  CAS  Google Scholar 

  • Boron W. F. (1983) Topical review: Transport of H+ and of ionic weak acids and bases. J. Membrane Biol 72, 1–16.

    CAS  Google Scholar 

  • Boron W. F. and Roos A. (1976) Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol. 231, 799–809.

    PubMed  CAS  Google Scholar 

  • Brooks D. J., Lammertsma A. A., Beaney R. P., Leenders K. L., Buckingham P. D., Marshall J., and Jones T. (1984) Measurement of regional cerebral pH in human subject using continuous inhalation of 11CO2 and positron emission tomography. J. Cereb. Blood Flow Metub. 4, 458–465.

    CAS  Google Scholar 

  • Brzezinski J., Klallquist A., and Sieslo B. K. (1967) Mean carbon dioxide tension in the brain after carbonic anhydrase inhibition. J. Physiol 188, 13–23.

    PubMed  CAS  Google Scholar 

  • Buxton R. B., Wechsler L. R., Alpert N. M., Ackerman R. H., Elmaleh D. R., and Correia J. A. (1984) Measurement of brain pH using 11CO2 and positron emission tomography. J Cereb Blood Flow Metub 4, 8–16.

    CAS  Google Scholar 

  • Caronna J. J., Plum F., and Siesjö B. K.(1974) PCO2 gradients between blood and CSF in rat during alterations of acid-base balance. Am. J. Physiol. 227, 1173–1177

    PubMed  CAS  Google Scholar 

  • Cole K. S., Li C.-L., and Bak A. F. (1969) Electrical analogues for tissues. Exp Neural. 24, 459–473.

    CAS  Google Scholar 

  • Conway E. J. (1950) Microdiffusion Analysts and Volumetric Error C. Lock-wood, London.

    Google Scholar 

  • Csiba L., Paschen W., and Hossmann K.-A. (1983) A topographic quantitative method for measuring brain tissue pH under physlologrcal and pathophysiological conditions. Brum Res 289, 334–337.

    CAS  Google Scholar 

  • Davies D. G. and Gurtner G. H. (1973) CSF acid-base balance and the Wien-effect. J. Appl. Physiol. 34, 249–254.

    PubMed  CAS  Google Scholar 

  • Dletzel I., Hememann U., Hofmeier G., and Lux H. D. (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp. Bruin Res. 40, 432–439

    Google Scholar 

  • Dietzel I., Hememann U., Hofmeier G., and Lux H. D. (1982) Stimulusinduced changes in extracellular Na+ and l concentration in relation to changes in the size of the extracellular space. Exp. Bruin Res. 46, 73–84.

    CAS  Google Scholar 

  • Elazar Z., Kado R. T., and Adey W. R. (1966) Impedance Changes During Epileptic Seizures, in Epilepsia vol 7, Elsevier Amsterdam.

    Google Scholar 

  • Everett N. B., Simmons B., and Lasher E. P. (1956) Distribution of blood (Fe59) and plasma (I131) volumes of rats determined by liquid nitrogen freezing. Czrc. Res. 4, 419–424.

    CAS  Google Scholar 

  • Fenn W. O. and Maurer F. W. (1935) The pH of muscle. Protoplasma 24, 337–345.

    CAS  Google Scholar 

  • FenstermacherJ. D., Li C.-L., and Levin V. A. (1970) Extracellular space of the cerebral cortex of normothermic and hypothermic cats. Exp. Neural. 27, 101–114.

    Google Scholar 

  • Fink D. W. and Koehler W. R. (1970) pH effects on fluorescence of umbelliferone. Anal. Chem. 42, 990–993.

    CAS  Google Scholar 

  • Gadian D. G., Radda G. K., Richards R. E., and Seeley P. J. (1979) 31P NMR in Living Tissue: The Road from a Promising to an Important Tool in Biology, in Biochemical Applicutions of Mugneic Resonance (Shul-man R. G., ed.), Academic, New York.

    Google Scholar 

  • Garlick P. B., Radda G. K., and Seeley P. J. (1979) Studies of acidosis in the ischaemic heart by phosphorus nuclear magnetic resonance. Biochem. j, 184, 547–554.

    PubMed  CAS  Google Scholar 

  • Gertz K. H. and Loeschke H. H. (1956) Electrode zur Bestimmung des CO2-Drucks. Nuturwissenschaften 45, 160–161.

    Google Scholar 

  • Gleichmann U., Ingvar D. H., Lubbers D. W., Siesjö B. K., and Thews, G. (1962) Tissue pO2 and pCO2 of the cerebral cortex, related to blood gas tensions. Acta Physiol. Scand. 55, 127–138.

    PubMed  CAS  Google Scholar 

  • Hansen A. J. and Olsen C. E. (1980) Brain extracellular space during spreading depression and ischemia. Acta Physiol. Scand. 108, 355–365.

    PubMed  CAS  Google Scholar 

  • Heuser D. (1978) The Significance of Cortical Extracellular H+, K+ and Ca2+ Activities for Regulation of Local Cerebral Blood Flow Under Conditions of Enhanced Neuronal Activity, in Cerebral Vascular Smooth Muscle and its Control Ciba Foundation Symposium 56 (new series) Elsevier/Excerpta Medics/North-Holland, Amsterdam.

    Google Scholar 

  • Hochachka P. W. and Mommsen T. P. (1983) Protons and anaerobiosis. Science 219, 1391–1397.

    PubMed  CAS  Google Scholar 

  • Hogg R. J., Pucacco L. R., Carter N. W., Loptook A. R., and Kokko J. P. (1984) In situ PCO2 in the renal cortex, lever, muscle, and brain of the New Zealand white Rabbit. Am. J, Physiol. 247, F491–F493.

    CAS  Google Scholar 

  • Hossmann K.-A. (1982) Treatment of experimental cerebral ischemia. J. Cereb. Blood Flow Metab. 2, 275–297.

    PubMed  CAS  Google Scholar 

  • Kobatake K., Sako K., Masahiro I., Yamamoto Y. L., and Hakim A. M. (1984) Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15, 540–547.

    PubMed  CAS  Google Scholar 

  • Kraig R. P., Ferreira-Filho C. R., and Nicholsson C. (1983) Alkaline and acid transients in the cerebellar microenvironment. J. Neurophysiol. 49, 831–849.

    PubMed  CAS  Google Scholar 

  • Kraig R. P., Pulsinelli W. A., and Plum F. (1985) Heterogenous Distribution of Hydrogen and Bicarbonate Ions During Complete Brain Ischemia, in Progress in Brain Research vol. 63(Kogure K., Hossmann K.-A., Sieslo B. K., and Welsh F. A., eds.) Elsevier, Amsterdam

    Google Scholar 

  • Kraig R. P., Pulsmelli W. A, and Plum F. (1986) Carbonic acid buffer changes during complete brain ischemia Am. J. Physiol., 250, R348–R357.

    PubMed  CAS  Google Scholar 

  • Kuschinsky W. and Wahl M. (1978) Local chemical and neurogemc regulation of cerebral vascular resistance. Physiol. Rev 58, 656–689.

    PubMed  CAS  Google Scholar 

  • Levm V. A., Fenstermacher J. D., and Patlak C. S. (1970) Sucrose and inulin space measurements of cerebral cortex in four mammalian species. Am. J. Physil. 219, 1528–1533.

    Google Scholar 

  • Messeter K. and Sieslo B. K.(1971) The intracellular pH in the brain in acute and sustained hypercapma. Acta Physiol. Scand. 83, 210–219.

    PubMed  CAS  Google Scholar 

  • Meyer R. A., Kushmerick M. J., and Brown T. R. (1982) Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am. J. Physiol. 242, Cl–Cll.

    Google Scholar 

  • Mitchell R. A., Herbert D. A., and Carman C. T. (1965) Acid-base constants and temperature coefficients for cerebrospinal fluid. J. Appl. Physiol. 20, 27–30.

    PubMed  CAS  Google Scholar 

  • Moon R. B. and Richards J. H. (1973) Determination of intracellular pH by 31P nuclear magnetic resonance. J. Biol. Chem 248, 7276–7278.

    PubMed  CAS  Google Scholar 

  • Mutch W. A. C. and Hansen A. J. (1984) Extracellular pH changes during spreading depression and cerebral ischemia: Mechanisms of brain pH regulation. J. Cereb. Blood Flow Metab. 4, 17–27.

    PubMed  CAS  Google Scholar 

  • Myers R. (1979) Lactic Acid Accumulation as Cause of Brain Edema and Cerebral Necrosis Resulting from Oxygen Deprivation, in Advances in Perinal Neurology (Korobkin R. and Gmlleminault G., eds.) Spectrum, New York.

    Google Scholar 

  • Nemoto E. M. and Frinak S. (1981) Brain tissue pH after global brain ischemia and barbiturate loading in rats. Stroke 12, 77–82.

    PubMed  CAS  Google Scholar 

  • Nicholson C., Phillips J. M., and Gondner-Medwm A. R. (1979) Diffusion from an iontophoretic point-source in the brain. Bran Res. 169, 580–584.

    CAS  Google Scholar 

  • Pelligrmo D., Almquist L.-O., and Sieslo B. K.(1981a) Effects of insulin-induced hypoglycemia on intracellular pH and impedance in the cerebral cortex of the rat. Bruin Res. 221, 129–147.

    Google Scholar 

  • Pelligrino D. A., Musch T. I., and Dempsey J. A. (1981b) Interregional differences in brain intracellular pH and water compartmentation during acute normoxic and hypoxic hypocapnia in the anesthetized dog. Brain Res. 214, 387–404.

    PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Prichard J. W., Behar K. L., Alger J. R., den Hollander J. A., and Shulman R. G. (1985) Cerebralintracellular pHby 31Pnuclear magnetic resonance spectroscopy. Neurology 35, 781–788.

    PubMed  CAS  Google Scholar 

  • Plum F. (1983) What causes infarction in ischemic brain? The Robert Wartenberg lecture. Neurology 33, 222–233.

    PubMed  CAS  Google Scholar 

  • Ponten U. and Sieslo B. K. (1964) A method for the determination of the total carbon dioxide content of frozen tissues. Acta Physiol. Scam-L 60, 297–308.

    CAS  Google Scholar 

  • Ponten U. and Sieslo B. K. (1966) Gradients of CO2 tension in the brain. Acta Physd. Stand. 67, 129–140.

    CAS  Google Scholar 

  • Ponten U., Ratcheson R. A, Salford L. G., and Siesjö B. K. (1973) Optimal freezing conditions for cerebral metabolites in rats. J. Neurochem. 21, 1127–1138.

    PubMed  CAS  Google Scholar 

  • Raichle M. E., Grubb R. L. Jr., and Higgms C. S. (1979) Measurements of brain tissue carbon dioxide content in vivo of emission tomography. Bruin Res. 166, 413–417.

    CAS  Google Scholar 

  • Rall D. P., Oppelt W. W, and Patlak C. S. (1962) Extracellular space of brain as determined by diffusion of inulin from the ventricular system. Life Sci. 2, 43–48.

    Google Scholar 

  • Ranck Jr. J. B. (1963) Analysis of specific impedance of rabbit cerebral cortex. Exp. Neurol. 7, 153–174.

    PubMed  Google Scholar 

  • Roos A., (1965) Intracellular pH and intracellular buffering power of the cat brain. Am. J. Physiol. 209, 1233–1246.

    PubMed  CAS  Google Scholar 

  • Roos A. (1971) Intracellular pH and buffering power of rat brain. Am. J. Physiol. 221, 176–181.

    PubMed  CAS  Google Scholar 

  • Roos A. and Boron W. F. (1981) Intracellular pH. Physiol Rev. 61, 296–434.

    PubMed  CAS  Google Scholar 

  • Rottenberg D. A., Ginos J. Z., Kearfott K.J., Junck L., Dhawan V., and Jarden J. O. (1985) In vivo measurement of brain tumor pH using 11C DMO and positron emission tomography. Ann. Neural. 17, 70–79.

    CAS  Google Scholar 

  • Schneider W., Wahl M., Kuschinsky W., and Thurau K. (1977) Instruments and techniques: The use of microelectrodes for measurement of local H+ activity in the cortical subarachnoidal space of cats. Pflugers Arch. 372, 103–107.

    PubMed  CAS  Google Scholar 

  • Severinghaus J. W. and Bradley A. E. (1958) Electrodes for blood PO2 and PCO2 determination. J Appl Physiol 13, 515–520.

    PubMed  CAS  Google Scholar 

  • Seylaz J., Pinard E., Meric P., and Correze J.-L. (1983) Local cerebral PO2, PCO2, and blood flow measurements by mass spectroscopy. Am J. Physiol. 245, H513–518.

    PubMed  CAS  Google Scholar 

  • Siemkowicz E. and Hansen A. J. (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo-and hyperglycemic rats. Stroke 12, 236–240.

    PubMed  CAS  Google Scholar 

  • Sieslo B. K. (1961) A method for continuous measurement of the carbon dioxide tension on the cerebral cortex. Acta Physiol. Scand 51, 297–313.

    Google Scholar 

  • Sieslo B. K. (1962a) The solubility of carbon dioxide in cerebral cortical tissue of cats. With a note on the solubility of carbon dioxide in water, 0.16 M NaCl and cerebrospmal fluid Acta Physiol Stand. 55, 325–341

    Google Scholar 

  • Sleslo B. K. (1962b) The bicarbonateicarbomc acid buffer system of the cerebral cortex of cats, as studied in tissue homogenates. II. The pKi′ of carbonic acid at 37.5°C, and the relation between carbon dioxide tension and pH. Acta Neurol Stand. 38, 121–141.

    Google Scholar 

  • Sieslo B. K. (1972) The regulation of cerebrospmal fluid pH. Kidney Intl 1, 360–374.

    Google Scholar 

  • Sieslo B. K. (1978) Brain Energy Metabolism Wiley, Chichester, New York.

    Google Scholar 

  • Sieslo B. K. (1981) Cell damage in the brain A speculative synthesis. J Cereb. Blood Flow Metab. 1, 155–185.

    Google Scholar 

  • Sieslo B. K. (1982) Lactic Acidosis in the Brain. Occurrence, Triggering Mechanisms and Pathophysiological Importance, in Metabolic acido-sis. Ciba Foundation Symposium 87, Prtman, London.

    Google Scholar 

  • Sieslo B. K. (1984) Cerebral circulation and metabolism. J. Neurosurg. 60, 883–908.

    Google Scholar 

  • Sieslo B. K. (1985) Acid-Base Homeostasis in the Brain. Physiology, Chemistry, and Neurochemical Pathology, in Progress in Bruin Research vol. 63 (Kogure K., Hossmann K.-A., Sieslo B. K., and Welsh F. A., eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Sieslo B. K. and Ingvar M. (1983) Blood Flow, in Handbook of Neurochemis-try vol. 3, 2nd Ed. (Lajtha A., ed.) Plenum, New York.

    Google Scholar 

  • Sieslo B. K. and Messeter K. (1971) Factors Determining Intracellular pH, in Ion Homeostasis of the Bruin (Sieslo B. K. and Sorenson S eds.) Munksgaard, Copenhagen.

    Google Scholar 

  • Sieslo B. K. and Thompson W. O. B. (1965) The uptake of mspired 14CO2 into the acid-labile, the acid-soluble, the lipid, the protein and the nucleic acid fractions of rat brain tissue. Acta Physiol. Scand 64, 182–192.

    Google Scholar 

  • Sieslo B. K., Folbergrova J., and MacMillan V. (1972) The effect of hyper-capnia upon intracellular pH in the brain, evaluated by the bicarbonate-carbonic acid method and from the creatme phosphokinase equilibrium. J Neurochm 19, 2483–2495.

    Google Scholar 

  • Siggaard-Andersen O. (1966) Titrable acid or base of body fluids. Ann NY Acad. Set. 133, 41–58.

    CAS  Google Scholar 

  • Siggaard-Andersen O. (1974) The Acid-Base Status of the Blood 4th Ed. Munksgaard, Copenhagen

    Google Scholar 

  • Smith M.-L., von Hanwehr R., and Sieslö B. K. (1985) Cerebral acid-base changes in ischemia: Influence of preischemic plasma glucose concentration. J. Cereb. Blood Flow Metab. 5(suppl. 1), S239–240.

    Google Scholar 

  • Sokoloff L., Reivich M., Kennedy C., Les Rosters M. H., Pathley S., Pettigrew K. D., Sakurada O., and Shinahara M. (1977) The 14C-deoxyglycose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anaesthetized albino rat. J. Neurochem. 28, 897–916.

    PubMed  CAS  Google Scholar 

  • Stewart P. A. (1981) How To Understand Acid-Base. A Quantitative Acid-Base Primer for Biology and Medicme Edward Arnold, London.

    Google Scholar 

  • Sundt T. M. and Anderson R. E. (1980a) Intracellular brain pH and the pathway of a fat soluble pH indicator across the blood-brain barrier. Brain Res. 186, 355–364.

    PubMed  CAS  Google Scholar 

  • Sundt T. M. and Anderson R. E. (1980b) Umbelliferone as an intracellular pH-sensitive fluorescent indicator and blood-brain barrier probe: Instrumentation, calibration, and analysis. J. Cereb. Blood FlowMetab. 44, 60–75.

    Google Scholar 

  • Sundt T. M., Anderson R. E., and van Dyke R. A. (1978) Brain pH measurements using a diffusible, lipid soluble pH sensitive fluorescent indicator. J. Cereb. Blood Flow Metab. 31, 627–635.

    CAS  Google Scholar 

  • Syrota A., Castaing M., Rougemont D., Berridge M., Baron J. C., Bousser M. G., and Pocidalo J. J. (1983) Tissue acid-base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann. Neural. 14, 419–428.

    CAS  Google Scholar 

  • Tarby T. J., Costin A., and Ross Adey W. (1968) Effects of tetrodotoxin on inpedance in normal and asphyxiated cerebral tissue. Exp. Neural. 22, 517–531.

    CAS  Google Scholar 

  • Thomas R. C. (1984) Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J. Physlol. 354, 3P–22P.

    CAS  Google Scholar 

  • Thulborn K. R., du Boulay G. H., Duchen L. W., and Radda G. (1982) A 31P nuclear magnetic resonance in vivo study of cerebral ischaemia in the gerbil. J. Cereb. Blood Flow Metab. 2, 299–306.

    PubMed  CAS  Google Scholar 

  • Urbanics R., Leniger-Follert E., and Lubbers D. W. (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflugers Arch. 378, 47–53.

    PubMed  CAS  Google Scholar 

  • van Harreveld A. and Ochs S. (1956) Cerebral impedance changes after circulatory arrest. Am. J. Physiol. 187, 180–192.

    Google Scholar 

  • van Harreveld A., Murphy T., and Nobel K. W. (1963) Specific impedance of rabbit’s cortical tissue. Am J. Physiol. 205, 203–207.

    Google Scholar 

  • van Slyke D. D. and Neill J. M. (1924) The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J. Biol. Chem. 61, 523–575.

    Google Scholar 

  • von Hanwehr R., Smith M.-L., and Siesjö B. K. (1986) Extra-and intracellular pH during near-complete forebrain ischemia in the rat. J. Neurochem. 46, 331.

    Google Scholar 

  • Waddell W. J. and Bates R. G. (1969) Intracellular pH. Physiol. Rev. 49, 285–329.

    PubMed  CAS  Google Scholar 

  • Waddell W. J. and Butler T. C. (1959) Calculation of mtracellular pH from the distribution of 5,5-dimethyl-2,4-oxazohdinedione (DMO). Application to skeletal muscle of the dog. J. Clin. Invest. 38, 720–729.

    PubMed  CAS  Google Scholar 

  • Wallace W. M. and Hastings A. B. (1942) The distribution of the bicarbonate in mammalian muscle. J. Biol. Chem. 144, 637–649.

    CAS  Google Scholar 

  • Wang R. I. H. and Sonnenschein R. R. (1955) pH of cerebral cortex during induced convulsions. J. Neurophysiol. 18, 130–137.

    PubMed  CAS  Google Scholar 

  • Weyne J., Demeester G, and Leusen I. (1968) Bicarbonate and chloride shifts in rat brain during acute and prolonged respiratory acid-base changes. Arch. Int. Physiol. Biochim. 76, 415–433.

    PubMed  CAS  Google Scholar 

  • Weyne J., Pannier J. L., Demeester G., and Leusen I. (1970) Bicarbonate and chloride of rat brain during infusion-induced changes in bicarbonate concentration of blood. Pflugers Arch. 320, 45–63.

    PubMed  CAS  Google Scholar 

  • Woodward D. L., Reed D. J., and Woodbury D. M. (1967) Extracellular space of rat cerebral cortex. Am. J. Physiol. 212, 367–370.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc.

About this protocol

Cite this protocol

Siesjö, B.K., Boris-Möller, F., Martins, E. (1988). Acid—Base Balance. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) The Neuronal Microenvironment. Neuromethods, vol 9. Humana Press. https://doi.org/10.1385/0-89603-115-2:651

Download citation

  • DOI: https://doi.org/10.1385/0-89603-115-2:651

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-115-9

  • Online ISBN: 978-1-59259-614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics