Skip to main content

Nonhuman Primate Models in Trophic Factor Research

  • Protocol
Neurotrophic Factors

Part of the book series: Neuromethods ((NM,volume 25))

Abstract

Nonhuman primates are essential experimental models for research dealing with trophic factors, particularly regarding the effects of these factors on higher cognitive functions, including memory. These animals have several advantages over rodents. First, these species are our closest relatives, and many features of nonhuman primate behavior and brain biology closely resemble those identified in humans. Second, available evidence indicates that the pharmacokinetics of psychotrophic drugs is similar between humans and monkeys—a major reason why monkeys are so popular in studies of behavioral pharmacology. Third, the clinical and pathological manifestations of naturally occurring or experimentally induced disorders in nonhuman primates resemble more closely the features of human disorders than do homologous disorders in nonprimate species. For example, although intoxication with l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes motoric abnormalities in mice associated with dysfunction of the nigrostriatal system (Chiueh et al., 1984; Hallman et al., 1984; Heikkila et al., 1984; Mayer et al., 1986; Gupta and Gupta,1988; Mori et al., 1988; Date et al., 1990), only primates, and especially the African green monkey, exhibit the full manifestations of Parkinsonism (Burns et al., 1983; Langston et al., 1984; Bankiewicz et al., 1986; LangstonJ987; DeLongl990). Similarly, although aged rats exhibit memory impairments (Gallagher and Burwell,1989; Markowska et al., 1989; Gallagher et al., 1990; Olton et al., 1991) and some alterations in certain populations of neurons in the brain (Hornberger et al., 1985; Luine et al., 1986; Mesulam et al., 1987; Fischer et al., 1989; Koh et al., 1989; Altavista et al., 1990), only aged monkeys develop the complex behavioral problems similar to those that occur in aged humans and, to a much greater extent, patients with Alzheimer’s disease (AD) (Price et al., 1991a). Thus, the more closely the behavioral and brain abnormalities resemble those that occur in humans, the greater the potential of the animal model for understanding processes relevant to human disease. The above reasons raise the question regarding to what extent primate models need to be examined before considering trophic factor therapies for human neurological diseases. For example, in the fall of 1989, an ad hoc committee convened at the National Institute on Aging to evaluate the potential of nerve growth factor (NGF) to treat certain symptoms of patients with AD (Phelps et al., 1989). This committee set a series of prerequisites to be met before small-scale NGF clinical trials could be considered. A major precondition included evidence of the efficacy of NGF on nonhuman primate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie M. (1946) Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Abraham C. R., Selkoe D. J., Potter H., Price D.L., and Cork L. C. (1989) α1-antichymotrypsin is present together with the-protein in the monkey brain amyloid deposits. Neuroscience 32 715–720.

    Article  PubMed  CAS  Google Scholar 

  • Altavista M. C., Rossi P., Bentivoglio A. R, Crociain P., and Albanese A. (1990) Aging is associated with a diffuse impairment of forebrain cholinergic neurons. Brain Res. 508, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Applegate M. D., Kohatsos V.E., and Price D. L. (1989) Extended survival of medial septal cholinergic neurons following lesion of the fimbria-fornix. Soc. Neurosci. Abstr. 15, 408.

    Google Scholar 

  • Ator N. A. (1991) Subjects and instrumentation, in Experimental Analysts of Behavior Part 1 (Iversen I. H. and Lattal K.A., eds.) Elsevier Science Publishers, Amsterdam, pp. 1–62.

    Google Scholar 

  • Bachevaher J., Landis L. S., Walker L. C., Brickson M., Mishkin M., Price D.L., and Cork L. C. (1991) Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol. Aging 12, 99–111.

    Article  Google Scholar 

  • Bankiewicz K. S., Oldfield E. H., Chiueh C. C., Doppman J. L., Jacobowitz D.M., and Kopin I. J. (1986) Hemiparkinsonism in the monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci. 39, 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Barde Y.-A. (1989) Trophic factors and neuronal survival. Neuvon 2, 1525–1534.

    CAS  Google Scholar 

  • Barde Y.-A. (1988) What, if anything is a neurotrophic factor? Trends Neurosci. 11, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Bamett J., Baecker P., Routledge-Ward C., Bursztyn-Pettegrew H,, Chow J., Nguyen B., Bach C., Chan H., Tudzynski M. H., Yoshida K., Rubalcava R., and Gage F. H. (1990) Human β nerve growth factor obtained from a baculovirus expression system has potent in vitro and in vivo neurotrophic activity. Exp. Neural. ll0, 11–24.

    Google Scholar 

  • Bartus R. T., Dean R.L., and Beer B. (1983) An evaluation of drugs for improving memory in aged monkeys, implications for clinical trials in humans, Psychopharmacol. Bull. 19, 168–184.

    PubMed  CAS  Google Scholar 

  • Bartus R. T., Dean R.L.III, and Fleming D. L. (1979) Aging in the rhesus monkey, effects on visual discrimination learning and reversal learnmg. J. Gerontol. 34, 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Bartus R. T., Fleming D., and Johnson H. R. (1978) Aging in the rhesus monkey, debilitating effects on short-term memory. J. Gerontol. 33, 858–871.

    Article  PubMed  CAS  Google Scholar 

  • Bartus R.T. (1979) Physostrgmme and recent memory, effects in young and aged nonhuman primates. Science 206, 1087–1089.

    Article  PubMed  CAS  Google Scholar 

  • Beck K. D., Knusel B., Wmslow J, W., Rosenthal A., Burton L. E., Nikolics K., and Hefti F. (1992) Pretreatment of dopaminergic neurons III culture with brain-derived neurotrophic factor attenuates toxrcity of l-methyl-4-phenylpyridinmm. Neurodegeneration 1, 27–36.

    Google Scholar 

  • Berger B., Gaspar P., and Verney C. (1991) Dopaminergic innervation of the cerebral cortex, unexpected differences between rodents and primates. Trends Neuroscz. 14, 21–27.

    Article  CAS  Google Scholar 

  • Brashear H. R., Zaborszky L., and Heimer L. (1986) Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience 17, 439–451.

    Article  PubMed  CAS  Google Scholar 

  • Brewster M.E. (1989) Noninvasive drug delivery to the brain. Neurobiol. Aging 10, 638,639.

    Article  Google Scholar 

  • Brightman M.W. (1965) The distribution within the brain of ferntin injected into cerebrospinal fluid compartments. II. Parenchymal distrrbution. Am. J Anat. 117, 193–220.

    Article  PubMed  CAS  Google Scholar 

  • Bums R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., and Kopin I.J. (1983) A primate model of Parkinsoinsm: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-Cphenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80, 4546–4550.

    Article  Google Scholar 

  • Chandler C. E., Parsons L. M., Hosang M., and Shooter E. M. (1984) A monoclonal antibody modulates the mteraction of nerve growth factor with PC12 cells. J, Blol. Chem. 259, 6882–6889.

    CAS  Google Scholar 

  • Chiueh C. C., Markey S. P., Bums R. S., Johannessen J. N., Pert A., and Kopin I.J. (1984) Neurochemical and behavioral effects of systemic and intranigral administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the rat. Eur. J. Pharmacol. 100, 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Clarke P.G.H. (1990) Developmental cell death, morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213.

    Article  PubMed  CAS  Google Scholar 

  • Cole G. M., Huynh T.V., and Saitoh T. (1989) Evidence for lysosomal processing of amyloid β-protein precursor in cultured cells. Natrochem. Res. 14, 933–939.

    Article  CAS  Google Scholar 

  • Coleman P.D. and Flood D. G. (1987) Neuron numbers and dendritic extent in normal aging and Alzhenner’s disease. Neurobiol. Aging 8, 521–545.

    Article  PubMed  CAS  Google Scholar 

  • Coombs J. S., Curtis D.R., and Eccles J. C, (1957) The interpretation of spike potentials of motoneurones.J. Physiol. 139, 198–231.

    PubMed  CAS  Google Scholar 

  • Cork L. C., Master C., Beyreuther K., and Price D. L. (1990) Development of senile plaques. Relationships of neuronal abnormalities and amyloid deposits. Am. J. Pathol. 137, 1383–1392.

    PubMed  CAS  Google Scholar 

  • Dalgard D. W., Hardy R. J., Pearson S. L., Pucak G. J., Quander R. V., Zack P. M., Peters C.J., and Jahrlmg P. B. (1992) Combined simian hemorrhagic fever and Ebola virus infection in cynomolgus monkeys. Lab. An. Sci. 42, 152–157.

    CAS  Google Scholar 

  • D’Amato R. J., Alexander G. M., Schwartzman R. J., Kitt C. A., Price D.L., and Snyder S.H. (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327, 324–326.

    Article  PubMed  Google Scholar 

  • Date I., Notter M. F. D., Felten S.Y., and Felten D. L. (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic f ibroblast growth factor (aFGF). Brain Res. 526, 156–160.

    Article  PubMed  CAS  Google Scholar 

  • DeLong M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett S.B. (1990) Neural transplantation in animal models of dementia. Eur. J. Neuroscr. 2, 567–587.

    Article  Google Scholar 

  • Eckenstem F. and Baughman R. W. (1984) Two types of cholinergic innervation in cortex, one co-localized with vasoactive mtestinal polypeptide Nature 309, 153–155.

    Article  Google Scholar 

  • Eckenstem F. and Thoenen H. (1983) Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase. Neurosa. Lett. 36, 211–215.

    Article  Google Scholar 

  • Ernfors P., Ibez C. F, Ebendal T., Olson L., and Persson H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc. Natl. Acad. Sci. USA 87, 5454–5458

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher J. and Kaye T. (1988) Drug “diffusion” within the brain. Ann. NY Acad. Sci 531, 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Fischer W., Blbrklund A., Chen K., and Gage F. H. (1991) NGF improves spatial memory in aged rodents as a function of age J. Neuroscz. 11, 1889–1906.

    CAS  Google Scholar 

  • Fischer W., Gage F.H., and Bjbrklund A. (1989) Degenerative changes in forebrain cholinergrc nuclei correlate with cogintive impairments in aged rats. Eur.J. Neurosci. 1, 34–45.

    Article  PubMed  Google Scholar 

  • Fischer W., Wictorin K., Bjorklund A., Williams L. R., Varon S., and Gage F.H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Fleischman C. A., Gustilo M. C., Markowska A. L., Gorman L. K., Burton L. E., Olton D. S., Price D.L., and Koliatsos V. E. (1992) Human nerve growth factor (NGF) selectively improves spatial memory deficits in aged rats via stimulation of the basal forebrain cholinergic system (BFCS). Sot. Neurosci. Abstr. 18, 415.

    Google Scholar 

  • Gage F.H. and Buzsáki G. (1988) CNS grafting: potential mechanisms of action, in Neural Regeneration and Transplantation. Frontiers of Clinical Neuroscience, vol. 6 (Seil F.J., ed.) Alan R. Liss, New York, pp. 211–226.

    Google Scholar 

  • Gage F. H., Armstrong D. M., Williams L.R., and Varon S. (1988) Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neural. 269, 147–155.

    Article  CAS  Google Scholar 

  • Gage F. H., Kawaja M.D., and Fisher L. J. (1991) Genetically modified cells, applications for intracerebral grafting. Trends Neurosci. 14, 328–333.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M. and Burwell R. D. (1989) Relationship of age-related decline across several behavioral domains. Neurobiol. Aging 10, 691–708.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M., Burwell R. D., Kodsi M. H., McKinney M., Southerland S., Vella-Rountree L., and Lewis M. H. (1990) Markers for biogenic amines m the aged rat brain: relationship to decline in spatial learning ability. Neurobiol. Aging 11, 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Gouras G K., Koliatsos V.E., and Price D. L. (1990) Differential expression of nerve growth factor receptor in different subclasses of basal forebrain magnocellular neurons. Sot. Neurosci. Abstr. 16, 482.

    Google Scholar 

  • Gupta M. and Gupta B. K. (1988) Aged mice show more severe motor deficits and morphological changes following MPTP treatment than their younger counterparts. Ann. NY Acad. Sci. 515, 421–423.

    Article  Google Scholar 

  • Hagg T., Fass-Holmes B., Vahlsing H. L., Manthorpe M., Conner J. M., and Varon S. (1989a) Nerve growth factor (NGF) reverses axotomy-induced decreases in choline acetyltransferase, NGF receptor and size of medial septum cholmergrc neurons. Bruin Res. 505, 29–38.

    Article  CAS  Google Scholar 

  • Hagg T., Hagg F., Vahlsing H. L., Manthorpe M., and Varon S. (1989b) Nerve growth factor effects on cholinergic neurons of neostriatum and nucleus accumbens in the adult rat. Neurosczence 30, 95–103.

    Article  CAS  Google Scholar 

  • Hagg T., Manthorpe M., Vahlsing H.L., and Varon S. (1988) Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage. Exp. Neural. 101, 303–312.

    Article  CAS  Google Scholar 

  • Hallbaok F., Ibáñez C.F., and Persson H. (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6, 845–858.

    Article  Google Scholar 

  • Hallman H., Olson L., and Jonsson G. (1984) Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons i the mouse. Eur. J Pharmacol. 97, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Harbaugh R.D. (1989a) Novel CNS-directed drug delivery systems in Alzheimer’s disease and other neurological disorders. Author’s response to commentaries. Neurobiol. Aging 10, 648–650.

    Article  Google Scholar 

  • Harbaugh R.D. (1989b) Novel CNS-directed drug delivery systems in Alzheimer’s disease and other neurological disorders. Neuroblol. Aging 10, 623–429.

    Article  CAS  Google Scholar 

  • Hefti F. (1986) Nerve growth factor promotes survival of septal cholinerglc neurons after fimbrial tnsections. J. Neurosci. 6, 2155–2162.

    PubMed  CAS  Google Scholar 

  • Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Sczence 224, 1451–1453.

    Article  CAS  Google Scholar 

  • Heilbroner I’.L. and Kemper T. L. (1990) The cytoarchitectomc distribution of senile plaques in three aged monkeys. Actu Neuropathof. 81, 60–65.

    Article  CAS  Google Scholar 

  • Heruth K.T. (1988) Medtronic SynchroMed drug administration system. Ann. NYAcad. Sci. 531, 72–75.

    Article  CAS  Google Scholar 

  • Hohn A., Liebrock J., Bailey K., and Barde Y.-A. (1990) Identification and characterization of a novel member of the nerve growth factor/bramderived neurotrophic factor family. Nature 344, 339–341.

    Article  PubMed  CAS  Google Scholar 

  • Hornberger J. G, Buell S. J., Flood D. G., McNeill T.H., and Coleman P. D. (1985) Stability of numbers but not size of mouse forebrain cholinergic neurons to 53 months. Neurobd. Aging 6, 269–275.

    Article  CAS  Google Scholar 

  • Hubel D. H. (1991) Are we willing to fight for our research? Annu. Rev Neurosci. 14, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Hyman C., Hofer M., Barde Y.-A., Juhasz M., Yancopoulos G. D., Squinto S. P., and Lmdsay R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia mgra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., and Persson H. (1992) Disruption of the low affinty receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69, 329–341.

    Article  PubMed  Google Scholar 

  • Irwm I., DeLanney L. E., Forno L. S., Finnegan K. T., DiMonte D. A., and Langston J.W. (1990) The evolution of nigrostriatal neurochemical changes in the MMTP-treated squirrel monkey. Brain Res. 531, 242–252.

    Article  Google Scholar 

  • Javitch J. A., D’Amato R. J., Strittmatter S.M., and Snyder S. H. (1985) Parkorm-inducing neurotoxin N-methyl-C-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 82, 2173–2177

    Article  PubMed  CAS  Google Scholar 

  • Johnston J., Reich S., Bailey A., and Sluetz J. (1988) Shiley Infusaid pump technology. Ann. NγAcad. Sci 531, 57–65.

    Article  CAS  Google Scholar 

  • Kitt C A., Cork L. C., Eidelberg E., Joh T.H., and Price D. L (1986) Injury of nigral neurons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridme, a tyrosine hydroxylase immunocytochemical study in monkey. Neuroscience 17, 1089–1103.

    Article  PubMed  CAS  Google Scholar 

  • Knusel B., Winslow J, W., Rosenthal A., Burton L. E., Seid D. P., Nicolics K., and Hefti (1991) Promotion of central cholinergic and dopaminergic nuron differentiation by brain-derived neurotrophic factor but not neurotrophm 3. Proc. Natl. Acad. Sci. USA 88, 961–965.

    Article  PubMed  CAS  Google Scholar 

  • Koh S., Chang I’., Collier T.J., and Loy R. (1989) Loss of NGF receptor immunoreactivity in basal forebrain neurons of aged rats, correlation with spatial memory impairment. Brain Res. 498, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Applegate M. D., Kitt C. A., Walker L. C., DeLong M. R., and Price D.L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in the rat septal neurons followmg transection of the fimbria-fornix. Brazn Res. 482, 205–218.

    Article  CAS  Google Scholar 

  • Koliatsos V. E., Applegate M. D., Knusel B., Junard E. O., Burton L. E., Mobley W.C., Hefti F.F., and Price D. L. (1991a) Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in the rat. Exp. Neurof. 112, 161–173.

    Article  CAS  Google Scholar 

  • Koliatsos V. E., Clatterbuck R. E., Nanta H. J. W., Knusel B., Burton L. E., Hefti F. F., Mobley W.G, and Price D. L. (1991b) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann. Neurol. 30, 831–840.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Martin L.J., and Price D. L. (1990a) Efferent organization of the mammalian basal forebrain, in Brain Chohnergic Systems (Steriade M. and Biesold D., eds.) Oxford University Press, Oxford, pp. 120–152.

    Google Scholar 

  • Koliatsos V. E., Nauta H. J, W., Clatterbuck R. E., Holtzman D. M., Mobley W.C., and Price D. L. (1990b) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J. Neurosci. 10, 3801–3813.

    PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Shelton D. L., Mobley W.C., and Price D. L. (1988) A novel group of nerve growth factor receptor-immunoreactive neurons in the ventral horn of the lumbar spinal cord. Brain Res. 541, 121–128.

    Article  Google Scholar 

  • Koning G. and Feith F. (1988) A new implantable drug delivery system for patient-controlled analgesia. Ann. Nγ Acad. Sci. 531, 48–56.

    Article  CAS  Google Scholar 

  • Kordower J.H. and Mufson E. J. (1990) Galanin-like imrnunoreactivity withim the primate basal forebrain: differential staining patterns between humans and monkeys. J. Comp. Neurol. 294, 281–292.

    Article  PubMed  CAS  Google Scholar 

  • Kromer L.F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235, 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Langer R., Brem H., and Langer L. F. (1989) New directions in CNS drug delivery. Neurobrol. Aging 10, 642–644.

    Article  CAS  Google Scholar 

  • Langston J.W. (1987) MPTP: the promise of a new neurotoxin, in Movement Disorders 2 (Marsden C.D. and Fahn S., eds.) Butterworths, London, pp. 73–90.

    Google Scholar 

  • Langston J. W., Ballard I’., Tetrud J.W., and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979,980.

    Article  Google Scholar 

  • Langston J. W., Fomo L. S., Rebert C.S., and Irwm I. (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brutn Res. 292, 390–394.

    Article  CAS  Google Scholar 

  • Leibrock J., Lottspeich F., Hohn A., Hofer M., Hengerer B., Masiakowski P., Thoenen H., and Barde Y.-A. (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O., Backlund E-O., Farde L., Sedvall G., Freedman R., Hoffer B., Nobin A., Seiger Å., and Olson L. (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 22, 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Lord P., Allami H., Davis M., Diaz R., Heck I’., and Fhell R.(1988) Minimed technologies programmable implantable infusion system. Ann. Nγ Acad. Sci. 531, 66–71.

    Article  CAS  Google Scholar 

  • Luine V. N., Renner K. J., Heady S., and Jones K. J. (1986) Age and sexdependent decreases in ChAT in basal forebrain nuclei. Neurobiof. Agmg 7, 193–198.

    Article  CAS  Google Scholar 

  • Maisonpierre P. C., Belluscio L., Squmto S., Ip N. Y., Furth M. E., Lindsay R. M., and Yancopoulos G. D. (1990a) Neurotrophm-3: a neurotrophic factor related to NGF and BDNF. Sczence 247, 1446–1451.

    Article  CAS  Google Scholar 

  • Maisonpierre P. C., Belluscio L., Friedman B., Alderson R. F., Wiegand S. J., Furth M. E., Lindsay R. M., and γancopoulos G. D. (1990b) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509.

    Article  PubMed  CAS  Google Scholar 

  • Marano N., Dietzschold B., Earley J. J. Jr., Schatteman G., Thompson S., Grob I’., Ross A. H., Bothwell M., Atkmson B. F., and Koprowski H. (1987) Purification and amino terminal sequencing of human melanoma nerve growth factor receptor. J. Neurochem. 48, 225–232.

    Article  PubMed  CAS  Google Scholar 

  • Markowska A. L., Stone W. S., Ingram D. K., Reynolds J., Gold I’ E., Conti L.H., Pontecorvo M. J., Wenk G.L., and Olton D. S. (1989) Individual differences in aging: behavioral and neurobiological correlates. Neurobiol. Aging 10, 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Mayer R. A., Walters A.S., and Heikkila R. E. (1986) 1-Methyl-4-phenyl-1,2,3,6,tetrahydropyridine (MPTP) administrahon to C57-black mice leads to parallel decrements in neostriatal dopamine content and tyrosine hydroxylase activity. Eur. J. Pharmacol. 120, 375–377.

    Article  PubMed  CAS  Google Scholar 

  • Melander T. and Staines W. A. (1986) A galarun-like pepude coexists in putative cholinergic somata of the septum-basal forebrain complex and in acetylcholinesterase containmg fibers and varicosities withm the hippocampus in the owl monkey (Aotus trzzwgutus). Neurosci. Lett. 6, 17–22.

    Article  Google Scholar 

  • Mesulam M.-M., Mufson E.J., and Rogers J. (1987) Age-related shrinkage of cortically projecting cholinergic neurons: a selective effect. Ann. Neural. 22, 31–36.

    Article  CAS  Google Scholar 

  • Mesulam M.-M., Mufson E. J., Levey A.I., and Warner B. H. (1983a) Cholinergic innervation of cortex by the basal forebram: cytochemistry and cortical connections of the septal area diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neural. 214, 170–197.

    Article  CAS  Google Scholar 

  • Mesulam M-. M., Mufson E.J., Wainer B. H., and Levey A. I. (1983b) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Chb). Neuroscience 10, 1185–1201.

    Article  PubMed  CAS  Google Scholar 

  • Mobley W. C., Woo J. E., Edwards R. H., Riopelle R. J., Lox-go F. M., Weskamp G., Otten U., Valletta J. S., and Johnston M. V. (1989) Developmental regulation of nerve growth factor and its receptor in the rat caudateputamen. Neuron 3, 655–664.

    Article  PubMed  CAS  Google Scholar 

  • Mori S., Fujitake J., Kuno S., and Sano Y. (1988) Immunohistochemical evaluation of the neurotoxic effects of 1-methyl-Cphenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic nigrostriatal neurons of young adult mice using dopamine and tyrosine hydroxylase antlbodies. Neurosa. Mt. 90, 57–62.

    Article  CAS  Google Scholar 

  • O’Brein T. S., Svendsen C. N., Isacson O., and Sofromew M. V. (1990) Loss of true blue labellmg from the medial septum following transection of the fimbria-fornix: evidence for the death of cholinergic and noncholinergic neurons. Brarn Res. 508, 249–256.

    Article  Google Scholar 

  • Olton D. S., Markowska A. L., Koliatsos V., Henshaw R., Since S., Burton L. E., and Price D. (1992) Behavioral effects of nerve growth factor (NGF) in both young and aged rats. Sot. Neurosci. Abstr. 18, 415.

    Google Scholar 

  • Olton D. S., Markowska A., Breckler S. J., Wenk G. L., Pang K. C., and Koliatsos V. (1991) Individual differences in aging: behavioral and neural analyses. Blamed. Environ. Sci. 4, 166–172.

    CAS  Google Scholar 

  • Parent A., Poitras D., and Dub L. (1984) Comparative anatomy of central monoaminergic systems, in Classrcal Transmztters in the CNS, Part I, Handbook of Chemical Neuroanatomy, vol. 2 (Björklund A. and Hokfelt T., eds.) Elsevier, Amsterdam, pp. 409–439.

    Google Scholar 

  • Peterson C. M. (1989) Sustained and controlled release of neuroactive substances in the CNS by encapsulation into implantable polymers. Neuroblol. Aging 10, 639,640.

    Google Scholar 

  • Petrides P. E., and Shooter E. M. (1986) Rapid isolation of the 7S-nerve growth factor complex and its subunits from murine submaxillary glands and saliva. J. Neurochem. 46, 721–725.

    Article  PubMed  CAS  Google Scholar 

  • Phelps C. H., Gage F. H., Growdon J. H., Hefti F., Harbaugh R., Johnston M. V., Khachaturian Z., Mobley W., Price D., Raskind M., Simpkins J., Thai L., and Woodcock J. (1989) (Ad hoc working group on nerve growth factor and Alzheimer’s disease). Potential use of nerve growth factor to treat Alzheimer’s disease. Science 243, 11.

    Google Scholar 

  • Powell E. M., Sobarzo M. R., and Saltzman W. M. (1990) Controlled release of nerve growth factor from a polymeric implant. Brazn Res. 515, 309–311.

    Article  CAS  Google Scholar 

  • Presty S. K., Bachevalier J., Walker L. C., Struble R. G., Price D. L., Mishkin M., and Cork L. C. (1987) Age differences in recognition memory of the rhesus monkey (Macaca mulatta). Neurobrol. Agmg 8, 435–440.

    CAS  Google Scholar 

  • Price D. L., Koliatsos V. E., Gouras G. K., Burton L. E., Winslow J. W., and Nikolics K. (1991a) Highly selective effects of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin3 (NT-3) on neurons of the basal nucleus complex (BNC). Sot. Neurosci. Abstr. 17, 751.

    Google Scholar 

  • Price D. L., Martin L. J., Sisodia S. S., Wagster M. V., Koo E. H., Walker L. C., Koliatsos V. E., and Cork L. C. (1991b) Aged nonhuman primates: an animal model of age-associated neurodegenerative disease. Bruin Pathof. 1, 287–296.

    Article  CAS  Google Scholar 

  • Rapp P. R. and Amaral D. G. (1989) Evidence for task-dependent memory dysfunction in the aged monkey. J. Neurosci. 9, 3568–3576.

    PubMed  CAS  Google Scholar 

  • Rapp P. R. and Amaral D. G. (1991) Recognition memory deficits in a subpopulation of aged monkeys resemble the effects of medial temporal lobe damage. Neurobd. Aging 12, 481–486.

    Article  CAS  Google Scholar 

  • Ridley R. M. and Baker H. F. (1991) Can fetal neural transplants restore function in the monkeys with lesion-induced behavioral deficits? Trends Neurosci. 14, 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M.B., Friedmann T., Robertson R. C., Tudzynski M., Wolff J. A., Breakefield X. O., and Gage F. H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A., Goeddel D. V., Nguyen T., Lewis M., Shih A., Laramee G. R., Nikolics K., and Winslow J. W. (1990) Primary structure and biological activity of a novel human neurotrophic factor. Neuron 4, 767–773.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A., Goeddel D. V., Nguyen T., Martin E., Burton L. E., Shih A., Laramee G. R., Wurm F., Mason A., Nikohcs K., and Winslow J. W. (1991) Primary structure and brological activity of human brainderived neurotrophic factor. Endocrinology 129, 1289–1294.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J., Bell D. S., Podhsny M.B., Price D. L., and Cork L. C. (1987) Conservation of brain amyloid proteins in aged mamiumals and humans with Alzhermer’s disease. Science 235, 873–877.

    Article  PubMed  CAS  Google Scholar 

  • Sladek J. R., Jr. and Shoulson I. (1988) Neural transplantation: a call for patience rather than patients. Science 240, 1386–1388.

    Article  PubMed  Google Scholar 

  • Snider W. D. and Johnson E. M., Jr. (1989) Neurotrophic molecules. Ann. Neural. 26, 489–506.

    Article  CAS  Google Scholar 

  • Springer J. E. (1989) The use of hollow polymer fibers for the delivery of bioactive molecules to the bram. Neurobiol. Agmg 10, 640,641.

    Google Scholar 

  • Stromberg I., Wetmore C. J., Ebendal T., Emfors P., Persson H., and Olson L. (1990) Rescue of basal forebrain cholinergic neurons after inplantation of genetically modified cells producmg recombmant NGF. J. Neurosci. Res. 25, 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Struble R. G., Cork L. C., Whitehouse P. J., and Price D L. (1982) Chohnergic mnervation in neuritic plaques. Sczence 216, 413–415.

    Article  CAS  Google Scholar 

  • Struble R. G., Powers R. E., Casanova M. F., Kitt C. A., Brown E. C., and Price D. L. (1987) Neuropeptidergic systems in plaques of Alzherrner’s disease. J. Neuropathol. Exp. Neural. 46, 567–584.

    Article  CAS  Google Scholar 

  • Struble R. G., Price D. L, Jr., Cork L. C., and Price D. L. (1985) Senile plaques in cortex of aged normal monkeys. Bram Res. 361, 267–275.

    Article  CAS  Google Scholar 

  • Swanson L. W., Kohler G, and Bjorklund A. (1987) The limbic region, I: the septohippocampal system, in Integrated Systems of fhe CNS, Parf I. Hypothalamus Amygala Retina. Handbook of Chemical Neuroanatomy, vol. 5 (Björklund A., Hokfelt T., and Swanson L. W., eds.) Elsevier, Amsterdam, pp, 125–277.

    Google Scholar 

  • Thoenen H. (1991) The changing scene of neurotrophic factors, Trends Neurosci. 14, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Tigges J., Gordon T. P., McClure H. M., Hall E. C., and Peters A. (1988) Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center. Am. J. Prtmatol. 15, 263–273.

    Article  Google Scholar 

  • Tuszynski M. H. U H. S., Amaral D. G., and Gage F. H. (1990a) Nerve growth factor infusion m the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 10, 3604–3614.

    PubMed  CAS  Google Scholar 

  • Tuszynski M. H., Armstrong D. M., and Gage F. H. (1990b) Basal forebrain cell loss following fimbria/fomix transection. Bram Res. 508, 241–248.

    Article  CAS  Google Scholar 

  • Tuszynsli M.H., Sang H., Yoshida K., and Gage F. H. (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neural. 30, 625–636.

    Article  Google Scholar 

  • Wagster M. V., Cork L. C., and Price D. L. (1991) Age-related changes in glutamatergic receptor binding in rhesus monkey brain. Sot. Neurosn. Absfr. 17, 368.

    Google Scholar 

  • Walker L. C., Kitt C. A., Cork L. C., Struble R. G., Dellovade T. L., and Price D. L. (1988a) Multiple transmitter systems contribute neurites to individual senile plaques. J. Neuropathol. Exp. Neural. 47, 138–144.

    Article  CAS  Google Scholar 

  • Walker L. C, Kitt C. A., Schwam E., Buckwald B., Garcia F., Sepinwall J,, and Price D. L. (1987) Senile plaques in aged squirrel monkeys. Neurobiol. Agmg 8, 291–296.

    Article  CAS  Google Scholar 

  • Walker L. C., Kitt C. A., Struble R. G., Wagster M. V., Price D. L., and Cork L. C. (1988b) The neural basis of memory decline in aged monkeys. Neurobiol. Asing 9, 657–666.

    Article  CAS  Google Scholar 

  • Walker L. C., Koliatsos V. E., Kitt C. A., Richardson R. T., Rokaeus A., and Price D. L. (1989) Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J. Comp. Neural. 280, 272–282.

    Article  CAS  Google Scholar 

  • Walker L. C., Master C., Beyreuther K., and Price D. L. (1990) Amyloid in the brains of aged squirrel monkeys. Acta Neuropathol. 80, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Wenk G. L., Pierce D. J., Struble R. G., Price D. L., and Cork L. C. (1989) Agerelated changes in multiple neurotransmitter systems in the monkey brain. Neurobiol. Aging l0, 11–19.

    Article  Google Scholar 

  • Weskamp G. and Otten L. J. (1987) An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J Neurochem. 48, 1779–1786.

    Article  PubMed  CAS  Google Scholar 

  • Williams L. R., Varon S., Peterson G. M., Wictorin K., Fischer W., Bjorklund A., and Gage F. H (1986) Continuous infusion of nerve growth factor prevents basal forebram neuronal death after fimbria-formx transection. Proc. Natl. Acad. Sn. USA 83, 9231–9235.

    Article  CAS  Google Scholar 

  • Wisniewski H. M. and Terry R. D. (1973) Reexamination of the pathogenesis of the senile plaque, in Progress in Neuropathology, vol. II (Zimmerman H. M., ed.) Grune & Stratton, New York, pp. 1–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press IncThe Humana Press Inc.

About this protocol

Cite this protocol

Koliatsos, V.E., Price, D.L. (1993). Nonhuman Primate Models in Trophic Factor Research. In: Boulton, A.A., Baker, G.B., Hefti, F. (eds) Neurotrophic Factors. Neuromethods, vol 25. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-249-3:331

Download citation

  • DOI: https://doi.org/10.1385/0-89603-249-3:331

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-249-1

  • Online ISBN: 978-1-59259-630-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics