Skip to main content

Structure-Function studies based on in vitro expression

  • Protocol
In Vitro Transcription and Translation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 37))

  • 1185 Accesses

Abstract

The advent of efficient procedures for site-directed and random in vitro mutagenesis has led to detailed exploration of protein structure-function relationships. Using these approaches, amino acid residues critical for protein activity can be determined in the absence of X-ray crystallographic data (1, 2). An important prerequisite for any study examining protein structure-function relationships is an efficient expression system that gives not only adequate protein yield, but also fully native protein. Expression of mammalian genes in E. coli is often very successful with good protein yields, but some proteins are not correctly folded and, as a consequence, are not fully biologically active. Structure-function studies can be hampered by poor expression of modified proteins in both yeast and E. coli (3). Mammalian expression systems can give high-fidelity protein, but often the protein yield is poor and significant purification may be required. Systematic studies of protein using mutagenesis often require the analysis of a large number of modified proteins. If this process requires recloning into expression vectors, expression of protein, and purification, the analysis of a large number of proteins becomes prohibitive. The rabbit reticulocyte lysate (RRL,) translation system can be used to provide small quantities of protein when primed with synthetic mRNA generated in vitro from DNA templates with bacterial RNA polymerases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tymms, M. J., McInnes, B., Waine, G. J., Cheetham, B. F., and Linnane, A. W. (1989) Functional significance of amino acid residues within conserved hydrophilic regions in human mterferons-α. Antiviral Res. 12, 37–48.

    Article  PubMed  CAS  Google Scholar 

  2. Waine, G. J., Tymms, M. J., Brandt, E. R., Cheetham, B. F., and Linnane, A. W. (1992) Structure-function study of the region encompassing residues 26-40 of human interferon-α4: identification of residues important for antiviral and antiproliferative activities. J. Interferon Res. 12, 43–48.

    PubMed  CAS  Google Scholar 

  3. Tymms, M. J. and McInnes, B. (1988) Efficient in vitro expression of interferon-α analogues using SP6 polymerase and rabbit reticulocyte lysate. Gene Anal. Technol. 5, 9–15

    Article  CAS  Google Scholar 

  4. Dalman, F. C., Sturzenbecker, L. J., Levin, A. A., Lucas, D. A., Perdew, G. H., Petkovitch, M., Chambon, P., Grippo, J. F., and Pratt, W. B. (1991) Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form “docking” complexes with hsp90. Biochemistry 30, 5605–5608.

    Article  PubMed  CAS  Google Scholar 

  5. Omura, F., Taniyama, Y., and Rikuchi, M. (1991) Behavior of cysteine mutants of human lysozyme in de novo synthesis and in vivo secretion. Eur. J. Biochem. 198, 477–484.

    Article  PubMed  CAS  Google Scholar 

  6. Jones, P. F., Jakubowicz, T., Pitossi, F. J., Maurer, F., and Hemmings, B. A. (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc. Natl. Acad. Sci. USA 88, 4171–4175.

    Article  PubMed  CAS  Google Scholar 

  7. Hennessey, E. S., Drummond, D. R., and Sparrow, J. C. (1991) Post-translational processing of the amino terminus affects actin function. Eur. J. Biochem. 197, 345–352.

    Article  PubMed  CAS  Google Scholar 

  8. Javaux, F., Donda, A., Vassar, G., and Christophe, D. (1991) Cloning and sequence analysis of TFE, a helix-loop-helix transcription factor able to recognize the thyroglobulin gene promoter in vitro Nucleic Acids Res. 19, 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  9. Lim, F., Kraut, N., Frampton, J., and Graf, T. (1992) DNA binding by c-Ets-1, but not v-Ets, is repressed by an intramolecular mechanism. EMBO J. 11, 643–652.

    PubMed  CAS  Google Scholar 

  10. Ner, S. S., Goodin, D. B., and Smith, M. (1988) A simple and efficient procedure for generating random point mutations and for codon replacement using mixed oligonucleotides. DNA 7, 127–134.

    Article  PubMed  CAS  Google Scholar 

  11. Kunkel, T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad Sci. USA 82, 488–492.

    Article  PubMed  CAS  Google Scholar 

  12. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19. Gene 33, 103–119.

    Article  PubMed  CAS  Google Scholar 

  13. Loveland, B. E., Johns, T. G., Mackay, I. R., Vaillant, F., Wang, Z.-X., and Hertzog, P. J. (1992) Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochem. Int. 27, 501–510.

    PubMed  CAS  Google Scholar 

  14. Mosmann, T. R. (1983) Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 65, 55–63.

    Article  CAS  Google Scholar 

  15. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Luboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  16. Nossal, N. G. (1974) DNA synthesis on a double-stranded DNA template by the T4 bacteriophage DNA polymerase and the T4 gene 32 DNA unwinding protein. J. Biol. Chem. 249, 5668–5676.

    PubMed  CAS  Google Scholar 

  17. Krieg, P. A. and Melton, D. A (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  PubMed  CAS  Google Scholar 

  18. Hertzog, P. J., Johns, T. G., Callister, K. A., Dinatale, A., and Linnane, A. W. (1990) Comparative antiproliferative and receptor binding activities of interferons α and β on lymphoblastoid and melanoma cells. Biochem. Int. 22, 1095–1102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Tymms, M.J., Hertzog, P.J. (1995). Structure-Function studies based on in vitro expression. In: Tymms, M.J. (eds) In Vitro Transcription and Translation Protocols. Methods in Molecular Biology, vol 37. Humana Press. https://doi.org/10.1385/0-89603-288-4:317

Download citation

  • DOI: https://doi.org/10.1385/0-89603-288-4:317

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-288-0

  • Online ISBN: 978-1-59259-524-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics