Skip to main content

Electroporation Theory

Concepts and Mechanisms

  • Protocol
Electroporation Protocols for Microorganisms

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 47))

Abstract

Application of strong electric field pulses to cells and tissue is known to cause some type of structural rearrangement of the cell membrane. Significant progress has been made by adopting the hypothesis that some of these rearrangements consist of temporary aqueous pathways (“pores”), with the electric field playing the dual role of causing pore formation and providing a local driving force for ionic and molecular transport through the pores. Introduction of DNA into cells in vitro is now the most common application. With imagination, however, many other uses seem likely. For example, in vitro electroporation has been used to introduce into cells enzymes, antibodies, and other biochemical reagents for intracellular assays; to load larger cells preferentially with molecules in the presence of many smaller cells; to introduce particles into cells, including viruses; to kill cells purposefully under otherwise mild conditions; and to insert membrane macromolecules into the cell membrane itself. Only recently has the exploration of in vivo electroporation for use with intact tissue begun. Several possible applications have been identified, viz. combined electroporation and anticancer drugs for improved solid tumor chemotherapy, localized gene therapy, transdermal drug delivery, and noninvasive extraction of analytes for biochemical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumann, E., Sowers, A., and Jordan, C. (eds.) (1989) Electroporation and Electrofusion in Cell Biology. Plenum, New York.

    Google Scholar 

  2. Tsong, T. Y. (1991) Electroporation of cell membranes. Biophys. J. 60, 297–306.

    Article  PubMed  CAS  Google Scholar 

  3. Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. (eds.) (1992) Guide to Electroporation and Electrofusion. Academic.

    Google Scholar 

  4. Weaver, J. C. (1993) Electroporation: a general phenomenon for manipulating cells and tissue. J. Cell. Biochem. 51, 426–435.

    PubMed  CAS  Google Scholar 

  5. Orlowski, S. and Mir, L. M. (1993) Cell electropermeabilization: a new tool for biochemical and pharmacological studies. Biochim. Biophys. Acta 1154, 51–63.

    PubMed  CAS  Google Scholar 

  6. Weaver, J. C. (1994) Electroporation in cells and tissues: a biophysical phenomenon due to electromagnetic fields. Radio Sci. (in press).

    Google Scholar 

  7. Weaver, J. C. and Chizmadzhev, Y. A. Electroporation, in CRC Handbook of Biological Effects of Electromagnetic Fields, 2nd ed. (Polk, C. and Postow, E., eds.), CRC, Boca Raton (submitted).

    Google Scholar 

  8. Parsegian, V. A. (1969) Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846.

    Article  PubMed  CAS  Google Scholar 

  9. Zahn, M. (1979) Electromagnetic Field Theory: A Problems Solving Approach, Wiley, New York.

    Google Scholar 

  10. Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., Chizmadzhev, Yu. A., Pastushenko, V. F., and Tarasevich, M. R. (1979) Electric breakdown of bilayer membranes: I. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 6, 37–52.

    Article  CAS  Google Scholar 

  11. Pastushenko, V. F., Chizmadzhev, Yu. A., and Arakelyan, V. B. (1979) Electric breakdown of bilayer membranes: II. Calculation of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochem. Bioenerg. 6, 53–62.

    Article  CAS  Google Scholar 

  12. Chizmadzhev, Yu. A., Arakelyan, V. B., and Pastushenko, V. F. (1979) Electric breakdown of bilayer membranes: III. Analysis of possible mechanisms of defect origin. Bioelectrochem. Bioenerg. 6, 63–70.

    Article  CAS  Google Scholar 

  13. Pastushenko, V. F., Chizmadzhev, Yu. A., and Arakelyan, V. B. (1979) Electric breakdown of bilayer membranes: IV. Consideration of the kinetic stage in the case of the single-defect membrane. Bioelectrochem. Bioenerg. 6, 71–79.

    Article  CAS  Google Scholar 

  14. Arakelyan, V. B., Chizmadzhev, Yu. A., and Pastushenko, V. F. (1979) Electric breakdown of bilayer membranes: V. Consideration of the kinetic stage in the case of the membrane containing an arbitrary number of defects. Bioelectrochem. Bioenerg. 6, 81–87.

    Article  CAS  Google Scholar 

  15. Pastushenko, V. F., Arakelyan, V. B., and Chizmadzhev, Yu. A. (1979) Electric breakdown of bilayer membranes: VI. A stochastic theory taking into account the processes of defect formation and death: membrane lifetime distribution function. Bioelectrochem. Bioenerg. 6, 89–95.

    Article  CAS  Google Scholar 

  16. Pastushenko, V. F., Arakelyan, V. B., and Chizmadzhev, Yu. A. (1979) Electric breakdown of bilayer membranes: VII. A stochastic theory taking into account the processes of defect formation and death: statistical properties. Bioelectrochem. Bioenerg. 6, 97–104.

    Article  CAS  Google Scholar 

  17. Litster, J. D. (1975) Stability of lipid bilayers and red blood cell membranes. Phys. Lett. 53A, 193,194.

    CAS  Google Scholar 

  18. Taupin, C., Dvolaitzky, M., and Sauterey, C. (1975) Osmotic pressure induced pores in phospholipid vesicles. Biochemistry 14, 4771–4775.

    Article  PubMed  CAS  Google Scholar 

  19. Powell, K. T., Derrick, E. G., and Weaver, J. C. (1986) A quantitative theory of reversible electrical breakdown. Bioelectrochem. Bioelectroenerg. 15, 243–255.

    Article  Google Scholar 

  20. Weaver, J. C. and Barnett, A. (1992) Progress towards a theoretical model of electroporation mechanism: membrane electrical behavior and molecular transport, in Guide to Electroporation and Electrofusion (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic.

    Google Scholar 

  21. Barnett, A. and Weaver, J. C. (1991) Electroporation: a unified, quantitative theory of reversible electrical breakdown and rupture. Bioelectrochem. Bioenerg. 25, 163–182.

    Article  CAS  Google Scholar 

  22. Freeman, S. A., Wang, M. A., and Weaver, J. C. (1994) Theory of electroporation for a planar bilayer membrane: predictions of the fractional aqueous area, change in capacitance and pore-pore separation. Biophysical J. 67, 42–56.

    Article  CAS  Google Scholar 

  23. Renkin, E. M. (1954) Filtration, diffusion and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243.

    PubMed  CAS  Google Scholar 

  24. Wang, M. A., Freeman, S. A., Bose, V. G., Dyer, S., and Weaver, J. C. (1993) Theoretical modelling of electroporation: electrical behavior and molecular transport, in Electricity and Magnetism in Biology and Medicine (Blank, M., ed.), San Francisco, pp. 138–140.

    Google Scholar 

  25. Weaver, J. C. and Mintzer, R. A. (1981) Decreased bilayer stability due to transmembrane potentials. Phys. Lett. 86A, 57–59.

    CAS  Google Scholar 

  26. Benz, R., Beckers, F., and Zimmermann, U. (1979) Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J. Membrane Biol. 48, 181–204.

    Article  CAS  Google Scholar 

  27. Pastushenko, V. F. and Chizmadzhev, Yu. A. (1982) Stabilization of conducting pores in BLM by electric current. Gen. Physiol. Biophys. 1, 43–52.

    Google Scholar 

  28. Sugar, I. P. and Neumann, E. (1984) Stochastic model for electric field-induced membrane pores: electroporation. Biophys. Chemistry 19, 211–225.

    Article  CAS  Google Scholar 

  29. Weaver, J. C., Harrison, G. I., Bliss, J. G., Mourant, J. R., and Powell, K. T. (1988) Electroporation: high frequency of occurrence of the transient high permeability state in red blood cells and intact yeast. FEBS Lett. 229, 30–34.

    Article  PubMed  CAS  Google Scholar 

  30. Tsoneva, I., Tomov, T., Panova, I., and Strahilov, D. (1990) Effective production by electrofusion of hybridomas secreting monodonal antibodies against Hc-antigen of Salmonella. Bioelectrochem. Bioenerg. 24, 41–49.

    Article  CAS  Google Scholar 

  31. Weaver, J. C. (1993) Electroporation: a dramatic, nonthermal electric field phenomenon, in Electricity and Magnetism in Biology and Medicine (Blank, M., ed.), San Francisco, pp. 95–100.

    Google Scholar 

  32. Chernomordik, L. V., Sukharev, S. I., Abidor, I. G., and Chizmadzhev, Yu. A. (1982) The study of the BLM reversible electrical breakdown mechanism in the presence of UO2 2+. Bioelectrochem. Bioenerg. 9, 149–155.

    Article  CAS  Google Scholar 

  33. Neumann, E. and Rosenheck, K. (1972) Permeability changes induced by electric impulses in vesicular membranes. J. Membrane Biol. 10, 279–290.

    Article  CAS  Google Scholar 

  34. Kinosita, K. Jr. and Tsong, T. Y. (1978) Survival of sucrose-loaded erythrocytes in circulation. Nature 272, 258–260.

    Article  PubMed  CAS  Google Scholar 

  35. Klenchin, V. A., Sukharev, S. I., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Yu. A. (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys. J. 60, 804–811.

    Article  PubMed  CAS  Google Scholar 

  36. Sukharev, S. I., Klenchin, V. A., Serov, S. M., Chernomordik, L. V., and Chizmadzhev, Y. A. (1992) Electroporation and electrophoretic DNA transfer into cells. Biophys. J. 63, 1320–1327.

    Article  PubMed  CAS  Google Scholar 

  37. Prausnitz, M. R., Lau, B. S., Milano, C. D., Conner, S., Langer, R., and Weaver, J. C. (1993) A quantitative study of electroporation showing a plateau in net molecular transport. Biophys. J. 65, 414–422.

    Article  PubMed  CAS  Google Scholar 

  38. Prausnitz, M. R., Milano, C. D., Gimm, J. A., Langer, R., and Weaver, J. C. (1994) Quantitative study of molecular transport due to electroporation: uptake of bovine serum albumin by human red blood cell ghosts. Biophys. J. 66, 1522–1530.

    Article  PubMed  CAS  Google Scholar 

  39. Gift, E. A. and Weaver, J. C. (1995) Observation of extremely heterogeneous electroporative uptake which changes with electric field pulse amplitude in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1234(1), 52–62.

    Article  PubMed  Google Scholar 

  40. Hui, L., Gift, E. A., and Weaver, J. C. Uptake of Bovine Serum Albumin by Yeast due to Electroporation: Existence of a Plateau as Pulse Amplitude is Increased (in preparation)

    Google Scholar 

  41. Lillie (1958) Glass, in Handbook of Physics (Condon, E. U. and Odishaw, H., eds.), McGraw-Hill, New York, pp. 8–83, 8–107

    Google Scholar 

  42. Neumann, E., Sprafke, A., Boldt, E., and Wolf, H. (1992) Biophysical digression on membrane electroporation, in Guide to Electroporation and Electrofusion (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic.

    Google Scholar 

  43. Lee, R. C., River, L. P., Pan, F.-S., Ji, L., and Wollmann, R. L. (1992) Surfactant induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc. Natl. Acad. Sci. USA 89, 4524–4528.

    Article  PubMed  CAS  Google Scholar 

  44. Gift, E. A. and Weaver, J. C. (1993) Cell survival following electroporation: quantitative assessment using large numbers of microcolonies, in Electricity and Magnetism in Biology and Medicine (Blank, M., ed.), San Francisco, pp. 147–150.

    Google Scholar 

  45. Weaver, J. C., Bliss, J. G., Powell, K. T., Harrison, G. I., and Williams, G. B. (1991) Rapid clonal growth measurements at the single-cell level: gel micro-droplets and flow cytometry. Bio/Technology 9, 873–877.

    Article  PubMed  CAS  Google Scholar 

  46. Weaver, J. C., Bliss, J. G., Harrison, G. I., Powell, K. T., and Williams, G. B. (1991) Microdrop technology: a general method for separating cells by function and composition. Methods 2, 234–247.

    Article  CAS  Google Scholar 

  47. Weaver, J. C. (1994) Molecular basis for cell membrane electroporation. Ann. NY Acad. Sci. 720, 141–152.

    Article  PubMed  CAS  Google Scholar 

  48. Okino, M. and Mohri, H. (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. 78, 1319–1321.

    PubMed  CAS  Google Scholar 

  49. Mir, L. M., Orlowski, S., Belehradek, J., Jr., and Paoletti, C. (1991) In vivo potentiation of the bleomycin cytotoxicity by local electric pulses. Eur. J. Cancer 27, 68–72.

    Article  PubMed  CAS  Google Scholar 

  50. Dev, S. B. and Hofmann, G. A. (1994) Electrochemotherapy—a novel method of cancer treatment. Cancer Treatment Rev. 20, 105–115.

    Article  CAS  Google Scholar 

  51. Prausnitz, M. R., Bose, V. G., Langer, R. S., and Weaver, J. C. (1992) Transdermal drug delivery by electroporation. Abstract, Proc. Intern. Symp. Control. Rel. Bioact. Mater. 19, Controlled Release Society, July 26–29, Orlando, FL, pp. 232,233.

    Google Scholar 

  52. Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C. (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90, 10,504–10,508.

    Article  PubMed  CAS  Google Scholar 

  53. Titomirov, A. V., Sukharev, S., and Kistoanova, E. (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta 1088, 131–134.

    PubMed  CAS  Google Scholar 

  54. Sukharev, S. I., Titomirov, A. V., and Klenchin, V. A. (1994) Electrically-induced DNA transfer into cells Electrotransfection in vivo, in Gene Therapeutics (Wolff, J. A., ed.), Birkhäuser, Boston, pp. 210–232.

    Google Scholar 

  55. Gaylor, D. C., Prakah-Asante, K., and Lee, R. C. (1988) Significance of cell size and tissue structure in electrical Trauma. J. Theor. Biol. 133, 223–237.

    Article  PubMed  CAS  Google Scholar 

  56. Bhatt, D. L., Gaylor, D. C, and Lee, R. C. (1990) Rhabdomyolysis due to pulsed electric fields. Plast. Reconstr. Surg. 86, 1–11.

    PubMed  CAS  Google Scholar 

  57. Hughes, K. and Crawford, N. (1989) Reversible electropermeabilisation of human and rat blood platelets: evaluation of morphological and functional integrity “in vitro” and “in vivo.” Biochim. Biophys. Acta 981, 277–287.

    Article  PubMed  CAS  Google Scholar 

  58. Mouneimne, Y., Tosi, P.-F., Barhoumi, R., and Nicolau, C. (1991) Biochim. Biophys. Acta 1066, 83–89.

    Article  PubMed  CAS  Google Scholar 

  59. Zeira, M., Tosi, P.-F., Mouneimne, Y., Lazarte, J., Sneed, L., Volsky, D. J, and Nicolau, C. (1991) Proc. Natl. Acad. Sci. USA 88, 4409–4413.

    Article  PubMed  CAS  Google Scholar 

  60. Belehradek, M., Domenge, C., Orlowski, S., Belehradek, J, Jr., and Mir, L. M. (1993) Cancer 72, 3694–3700.

    Article  PubMed  CAS  Google Scholar 

  61. Riviele, J. E., Monterio-Riviere, N. A., Rogers, R. A., Bommannan, D., Tamada, J. A., and Potts, R. O. Pulsatile Transdermal Delivery of LHRH Using Electroporation: Drug Delivery and Skin Toxicology (submitted).

    Google Scholar 

  62. Potts, R. O. and Francoeur, M. L. (1990) Lipid biophysics of water loss through the skin. Proc. Natl. Acad. Sci. USA 87, 3871–3873.

    Article  PubMed  CAS  Google Scholar 

  63. Bach, D. and Miller, I. R. (1980) Glyceryl monooleate black lipid membranes obtained from squalene solutions. Biophys. J. 29, 183–188.

    Article  PubMed  CAS  Google Scholar 

  64. Sugar, I. P. (1981) The effects of external fields on the structure of lipid bilayers. J Physiol. Paris 77, 1035–1042.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Weaver, J.C. (1995). Electroporation Theory. In: Nickoloff, J.A. (eds) Electroporation Protocols for Microorganisms. Methods in Molecular Biology™, vol 47. Humana Press. https://doi.org/10.1385/0-89603-310-4:1

Download citation

  • DOI: https://doi.org/10.1385/0-89603-310-4:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-310-8

  • Online ISBN: 978-1-59259-534-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics