Skip to main content

Capillary Gel Electrophoresis

  • Protocol
Capillary Electrophoresis Guidebook

Part of the book series: Methods in Molecular Biology ((MIMB,volume 52))

  • 1199 Accesses

Abstract

There is a great deal of interest in analytical biochemistry in the separation and identification of biologically important polymers, such as DNA protein and complex carbohydrate molecules (1,2). For relatively short single-stranded DNA units (i.e., oligonucleotides) and carbohydrate molecules, there is a need to separate by a single base difference (for DNA sequencing) (3) or even for identical chain length with a different sequence (identification of primers, probes, and antisense DNA molecules) (3,4). For the double-stranded DNA molecules, there is an interest to analyze and identify DNA molecules in the form of restriction fragments or PCR products. Using various types of sieving media allows us to do these kinds of separations. In capillary gel electrophoresis, crosslinked or noncrosslinked sieving matrices can be employed (57). The crosslinked gels, i.e., chemical gels, have a well-defined pore size. Noncrosslinked, or so-called physical gels, have a dynamic pore structure. This major difference provides the noncrosslinked linear polymer networks with much higher flexibility when compared to the crosslinked gels. One can operate at high temperatures (up to 50–70°C) while applying extremely high field strengths (up to 103 V/cm range) without any damage to the linear polymer network formulations (8. It is important to note that the crosslinked gels are not usable under such extreme conditions (9). The other main advantage of the linear polymer network system is that it can be easily replaced in the capillary column by simply rinsing the gel matrix through the capillary by pressure or vacuum. Therefore, if the column becomes contaminated, the gel is easily replaced extending the lifetime of the system. Employing the replaceable concept, there is a possibility of the use of pressure injection compared to the crosslinked gels where electrokinetic injection mode is the only possibility (10). It is important to note that in addition to convenience, pressure injection permits quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landers, J. P. (ed.) (1994) Handbook of Capillary Electrophoresis. CRC, Boca Raton, FL.

    Google Scholar 

  2. Li, S. F. Y. (1993) Capillary Electrophoresis. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  3. Schwartz, H. and Guttman, A. (1995) Separation of DNA by Capillary Electrophoresis. Beckman Primer 607397, Fullerton, CA.

    Google Scholar 

  4. El Rassi, Z (ed.) (1995) Carbohydrate Analysis. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  5. Cohen, A. S., Najarian, D. R., Paulus, A., Guttman, A., Smith, J. A., and Karger, B. L. (1988) Rapid separation and purification of oligonucleotides by high performance capillary electrophoresis. Proc. Natl. Acad. Sci. USA 85, 9660–9663.

    Article  CAS  Google Scholar 

  6. Lux, J. A., Yin, H. F., and Schomburg, G. (1990) A simple method for the production of gel-filled capillaries for capillary gel electrophoresis. J. High Resolut. Chromatogr. 13, 436, 437.

    Article  CAS  Google Scholar 

  7. Heiger, D. N., Cohen, A. S., and Karger, B. L. (1990) Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J. Chromatogr. 516, 33–48.

    Article  CAS  Google Scholar 

  8. Guttman, A. and Cooke, N. (1991) Effect of the temperature on the separation of DNA restriction fragments in capillary gel electrophoresis. J. Chromatogr. 559, 285–294.

    Article  CAS  Google Scholar 

  9. Tanaka, T. (1981) Gels. Sci. Am. 244, 124–138.

    Article  CAS  Google Scholar 

  10. Guttman, A. and Cooke, N. (1991) Capillary gel affinity electrophoresis of DNA fragments. Anal. Chem. 63, 2038–2042.

    Article  CAS  Google Scholar 

  11. Nelson, R. J., Paulus, A., Cohen, A. S., Guttman, A., and Karger, B. L. (1989) Use of peltier thermoelectric device to control column temperature in high performance capillary electrophoresis. J. Chromatogr. 480, 111–127.

    Article  CAS  Google Scholar 

  12. Cohen, A. S. and Karger, B. L. (1987) High performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. J. Chromatogr. 397, 409–417.

    Article  CAS  Google Scholar 

  13. Guttman, A. and Mazsaroff, I. (1992) Economical performance analysis in preparative capillary gel electrophoresis, in New Approaches in Liquid Chromatography, Intercongress, Budapest, Hungary, 63–75.

    Google Scholar 

  14. Pentoney, S. L., Konrad, K. D., and Kaye, W. (1992) A single-fluor approach to DNA sequence determination using high performance capillary electrophoresis. Electrophoresis 13, 467–474.

    Article  CAS  Google Scholar 

  15. Ruiz-Martinez, M. C., Berka, J., Belenki, A., Foret, F., Miller, A. W., and Karger, B. L. (1993) DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser induced fluorescence detection. Anal. Chem. 65, 2851–2858.

    Article  CAS  Google Scholar 

  16. Dovichi, N. (1994) Handbook of Capillary Electrophoresis. (Landers, J. P., ed.) CRC, Boca Raton, FL.

    Google Scholar 

  17. Guttman, A., Nelson, R. J., and Cooke, N. (1992) Prediction of migration behavior of oligonucleotides in capillary gel electrophoresis. J. Chromatogr. 593, 297–303.

    Article  CAS  Google Scholar 

  18. Schwartz, H. E., Ulfelder, K. J., Sunzeri, F. J., Busch, F. J., and Brownlee, R. G. (1991) Analysis of DNA restriction fragments and polymerase chain reaction products towards detection of the AIDS (HIV-1) virus in blood. J. Chromatogr. 559, 267–283.

    Article  CAS  Google Scholar 

  19. Guttman, A., Wanders, B., and Cooke, N. (1992) Enhanced separation of DNA restriction fragments by capillary gel electrophoresis using field strength gradients. Anal. Chem. 64, 2348–2351.

    Article  CAS  Google Scholar 

  20. Guttman, A., Paulus, A., Cohen, A. S., Grinberg, N., and Karger, B. L. (1988) Use of complexing agents for selective separation in high performance capillary electrophoresis, chiral resolution via cyclodextrins incorporated with polyacrylamide gels. J. Chromatogr. 448, 41–53.

    Article  CAS  Google Scholar 

  21. Guttman, A., Shich, P., and Cooke, N. (1992) P/ACE SDS capillary gel electrophoresis of proteins. Beckman Technical Information Bulletin, #DS-827.

    Google Scholar 

  22. Chiesa, C. and Horváth, C. S. (1993) Capillary zone electrophoresis of malto-oligosaccharides derivatized with 8-ammonaphtalene-1,3,6-trisulfonic acid. J. Chromatogr. 645, 337–352.

    Article  CAS  Google Scholar 

  23. Guttman, A., Cooke, N., and Starr, C. (1994) Capillary electrophoresis separation of oligosaccharides: I. effect of operational variables. Electrophoresis 15, 1518–1522.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Guttman, A. (1996). Capillary Gel Electrophoresis. In: Altria, K.D. (eds) Capillary Electrophoresis Guidebook. Methods in Molecular Biology, vol 52. Humana Press. https://doi.org/10.1385/0-89603-315-5:157

Download citation

  • DOI: https://doi.org/10.1385/0-89603-315-5:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-315-3

  • Online ISBN: 978-1-59259-539-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics