Skip to main content

In Vitro Engineering Using Synthetic tRNAs with Altered Anticodons Including Four-Nucleotide Anticodons

  • Protocol
Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 77))

Abstract

Synthetic tRNAs—those that are transcribed in vitro from a DNA sequence that has been ligated into an appropriate plasmid—have a wide variety of applications that range from testing tRNAs for their requirements for amino-acylation (1) to providing reagents for the investigation of protein folding (2). The examples that will be described here involve specific tRNAs with altered anticodons. The construction of several of these tRNAs will be given in detail as examples of the procedure applied. Also, methods of use and how to test the efficiency of these tRNAs will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall, K. B., Sampson, J. R., Uhlenbeck, O. C., and Redfield, A. G. (1989) Structure of an unmodified tRNA molecule. Biochemistry 28, 5794–5801.

    Article  PubMed  CAS  Google Scholar 

  2. Picking, W. D., Picking, W. L., Odom, O. W., and Hardesty, B. (1992) Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. Biochemistry 31, 2368–2375.

    Article  PubMed  CAS  Google Scholar 

  3. McClain, W. H. (1993) Rules that govern tRNA identity in protein syntheses. J. Mol. Biol. 234, 257–280.

    Article  PubMed  CAS  Google Scholar 

  4. Saks, M. E., Sampson, J. R., and Abelson, J. N. (1994) The tRNA identity problem, a search for rules. Science 263, 191–197.

    Article  PubMed  CAS  Google Scholar 

  5. Picking, W., Picking, W. D., and Hardesty, B. (1991) The use of synthetic tRNAs as probes for examining nascent peptides on Escherichia coli ribosomes. Biochimie 73, 1101–1107.

    Article  PubMed  CAS  Google Scholar 

  6. Picking, W. L., Picking, W. D., Ma, C., and Hardesty, B. (1991) A synthetic alanyl-initiator tRNA with initiator tRNA properties as determined by fluorescence measurements: comparison to a synthetic alanyl-elongator tRNA. Nucleic Acids Res. 19, 5749–5754.

    Article  PubMed  CAS  Google Scholar 

  7. Ma, C., Kudlicki, W., Odom, O. W., Kramer, G., and Hardesty, G. (1992) In vitro protein engineering using synthetic tRNAAla with different anticodons. Biochemistry 32, 7939–7945.

    Article  Google Scholar 

  8. Wada, K., Aota, S., Tsuchtya, R., Ishibasht, F., Gojobori, T., and Ikemura, T. (1990) Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 18, 2367.

    PubMed  CAS  Google Scholar 

  9. Ikemura, T. (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 146, 1–21.

    Article  PubMed  CAS  Google Scholar 

  10. Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H. (1990) Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212, 579–598.

    Article  PubMed  CAS  Google Scholar 

  11. Roth, J. R. (1981) Frameshift Suppression. Cell 24, 601, 602.

    Article  PubMed  CAS  Google Scholar 

  12. Tuohy, T. M. F., Thompson, S., Gesteland, R. F., and Atkins, J. F. (1992) Seven, eight and nine-membered anticodon loop mutants of tRNAArg-2 which cause +1 frameshifting. J. Mol. Biol. 228, 1042–1054.

    Article  PubMed  CAS  Google Scholar 

  13. Steinberg, S., Misch, A., and Sprinzl, M. (1993) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 21, 3011–3015 (hardcopy published by Molekulargenetischer Arbeitskreis Rhein/Main e V., Bayreuth, Germany).

    Article  PubMed  CAS  Google Scholar 

  14. Sambrook, J., Fritsch, E. F., and Mamatis, T. (1989) Molecular Cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  15. Butler, E. T. and Chamberlin, M. J. (1982) Bacteriophase SP6-specific RNA polymerase. J. Biol. Chem. 257, 5772–5778.

    PubMed  CAS  Google Scholar 

  16. Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.

    Article  PubMed  CAS  Google Scholar 

  17. Odom, O. W., Kudlicki, W., and Hardesty, B. (1997), In vitro engineering using acyl-derivatized tRNAs, in Protein Synthesis: Methods and Protocols (Martin, R., ed.) Humana, Totowa, NJ.

    Google Scholar 

  18. Mullis, K., Faloona, F., Scharf, S., Salki, R., Horn, G., and Erlich, H. (1989) in PCR Technology (Erlich, H., ed.), Stockton, NY, pp. 63–70.

    Google Scholar 

  19. Kudlicki, W., Kramer, G., and Hardesty, B. (1992) High efficiency cell-free synthesis of proteins refinement of the coupled transcription-translation system. Anal. Biochem. 206, 389–393.

    Article  PubMed  CAS  Google Scholar 

  20. Kudlicki, W., Odom, O. W., Kramer, G., and Hardesty, B. (1994) Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA. J. Biol. Chem. 269, 16,549–16,553.

    PubMed  CAS  Google Scholar 

  21. Baccanari, D., Phillips, A., Smith, S., Sinski, D., and Burchall, J. (1975) Purification and properties of Escherichia coli dihydrofolate reductase. Biochemistry 14, 5267–5273.

    Article  PubMed  CAS  Google Scholar 

  22. Schagger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Kramer, G., Kudlicki, W., Hardesty, B. (1998). In Vitro Engineering Using Synthetic tRNAs with Altered Anticodons Including Four-Nucleotide Anticodons. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:105

Download citation

  • DOI: https://doi.org/10.1385/0-89603-397-X:105

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-397-9

  • Online ISBN: 978-1-59259-563-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics