Skip to main content

Secretion of Recombinant Human Insulin-Like Growth Factor I (IGF-I)

  • Protocol
Pichia Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 103))

Abstract

The development of efficient recombinant protein production processes can be a critical factor in whether or not a pharmaceutical therapeutic protein can enter human clinical trials and ultimately the marketplace. This is especially true for therapeutic proteins that need to be administered on a daily basis for prolonged periods or if dosage requirements are very high. The use of Pichia pastoris as a recombinant expression host strain can be an excellent choice for such situations. P. pastoris has the potential for high expression levels (1,2), efficient secretion, and proper protein folding (35), and is a robust fermentation organism capable of high cell density on inexpensive simple basal salts medium (6). The development of an insulin-like growth factor I (IGF-I) production process in which P. pastoris is used as the recombinant host strain is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cregg, J. M., Vedvick, T. S., and Raschke, W. C. (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11, 905–909.

    CAS  Google Scholar 

  2. Clare, J. J., Rayment, F. B., Ballantine, S. P., Sreekrishna, K., and Ramanos, M. A. (1991) High-level expression tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology 9, 455–460.

    CAS  Google Scholar 

  3. Tschopp, J. F., Sverlow, G., Kosson, R., Craig, W., and Grinna, L. (1987) High-level secretion of glycosylated invertase in the methylotrophic yeast, Pichia pastoris. Bio/Technology 5, 1305–1308.

    CAS  Google Scholar 

  4. Digan, M. E., Lair S. V., Brierley, R. A., Siegel, R. S., Williams, M. E., Ellis, S. B., Kellaris, P. A., Provow, S. A., Craig, W. S., Velicelebi, G., Harpold, M. M., and Thill, G. P. (1989) Continuous production of a novel lysozyme via secretion from the yeast, Pichia pastoris. Bio/Technology 7, 160–164.

    CAS  Google Scholar 

  5. Vedvick, T., Buckholz, R. G., Engel, M., Urcan, M., Kinney, J., Provow, S., Siegel, R. S., and Thill, G. P. (1991) High level secretion of biologically active aprotinin from the yeast, Pichia pastoris. J. Ind. Microbiol. 7, 197–202.

    Article  CAS  Google Scholar 

  6. Brierley, R. A., Bussineau, C., Kosson, R., Melton, A., and Siegel, R. S. (1990) Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme. Ann. NY Acad. Sci. 589, 350–362.

    Article  CAS  Google Scholar 

  7. Preece, M. A. (1983) The somatomedins, in Hormones in Blood (Gray, C. H. and James, V. H. T., eds.) Academic, London, pp. 87–108.

    Google Scholar 

  8. Lynch, S. E., Nixon, J. C., Colvin, R. B., and Antoniades, H. N. (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc. Natl. Acad. Sci. USA 84, 7696–7700.

    Article  CAS  Google Scholar 

  9. Burleigh, B. D. and Meng, H. (1986) Development of biosynthetic somatomedin-C/IGF-I as a product for cell culture. Am. Biotechnol. Lab. 4, 48–53.

    CAS  Google Scholar 

  10. Quin, J. D. (1992) The insulin-like growth factors. Q. J. Med. 82, 81–90.

    CAS  Google Scholar 

  11. Cotterill, A. M. (1992) The therapeutic potential of recombinant human insulinlike growth factor-I. Clin. Endocrinol. Oxford 37, 11–15.

    Article  CAS  Google Scholar 

  12. Lewis M. E., Neff, N. T., Contreras, P. C., Stong, D. B., Oppenheim, R. W., Grebow, P. E., and Vaught, J. L. (1993) Insulin-like growth factor-I: potential for treatment of motor neuronal disorders. Exp. Neurol. 124, 73–88.

    Article  CAS  Google Scholar 

  13. Gluckman, P., Klempt, N., Guan, J., Mallard, C, Sirimanne, E., Dragunow, M., Klempt, M., Singh, K., Williams, C., and Nikolics, K. (1992) The role for IGF-I in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem. Biophys. Res. Commun. 182, 593–599.

    Article  CAS  Google Scholar 

  14. Bayne, M. L., Applebaum, J., Chicchi, G. G., Hayes, N. S., Green, B. G., and Cascieri, M. A. (1988) Expression, purification and characterization of recombinant human insulin-like growth factor I in yeast. Gene 66, 235–244.

    Article  CAS  Google Scholar 

  15. Elliott, S., Fagin, K. D., Nahri, L. O., Miller, J. A., Jones, M., Koski, R., Peters, M., Hsieh, P., Sachdev, R., Rosenfeld, R. D., Rohde, M. F., and Arakawa, T. (1990) Yeast-derived recombinant human insulin-like growth factor I: production, purification, and structural characterization. J. Protein Chem. 9, 95–104.

    Article  CAS  Google Scholar 

  16. Meng, H., Burleigh, B. D., and Kelly, G. M. (1988) Reduction studies on bacterial recombinant human somatomedin C/insulin-like growth factor I. J. Chromatogr. 443, 183–192.

    Article  CAS  Google Scholar 

  17. Chang, J. Y. and Swartz, J. R. (1993) Single step solubilization and folding of IGF-I aggregates from Escherichia coli, in Protein Folding In Vivo and In Vitro (Cleland, J. L., ed.), ACS Symp. Ser. 526, American Chemical Society, Washington, DC, pp. 178–188.

    Chapter  Google Scholar 

  18. Scott, R. W., Brierley, R. A., and Howland, D. S. (1996) Secretion sequence for the production of a heterologous protein in yeast. US Patent 5,521,086.

    Google Scholar 

  19. Stroman, D. W., Cregg, J. M., Harpold, M. M., and Sperl, G. T. (1989) Transformation of yeasts of the genus Pichia. US Patent 4,879,23.

    Google Scholar 

  20. Gleeson, M. A. and Howard, B. D. (1994) US Patent 5,324,660.

    Google Scholar 

  21. Jones, E. (1977) Proteinase mutants of Saccharomyces cerevisiae. Genetics 85, 23–33.

    Article  CAS  Google Scholar 

  22. Thill, G. P., Davis, G. R., Stillman, C., Holtz, G., Brierley, R. A., Engel, M., Buckholz, R., Kinney, J., Provow, S., Vedvick, T., and Siegel, R. S. (1990) Positive and negative effects of multi-copy integrated expression vectors on protein expression in Pichia pastoris, in Proceedings of 6th International Symposium on Genetics of Industrial Microorganisms, vol. 2 (Heslot, H., Davies, J., Bobichon, L., Durand, G., and Penasse, L., eds.), Societé Française de Microbiologie, Paris, pp. 477–490.

    Google Scholar 

  23. Brierley, R. A., Davis, G. R., and Holz, G. C. (1994) Production of insulin-like growth factor-1 in methylotrophic yeast cells. US Patent 5,234,639.

    Google Scholar 

  24. Holz, G. C. and Brierley, R. A. (1993) Method for the purification of intact, correctly folded insulin-like growth factor-1. US Patent 5,231,178.

    Google Scholar 

  25. Brierley, R. A., Abrams, J. A., Hanson, J. M., and Maslanka, F. C. (1996) IGF-I purification process. International Patent Application, Publ. No. WO 96/32407.

    Google Scholar 

  26. Schagger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Brierley, R.A. (1998). Secretion of Recombinant Human Insulin-Like Growth Factor I (IGF-I). In: Higgins, D.R., Cregg, J.M. (eds) Pichia Protocols. Methods in Molecular Biology, vol 103. Humana, Totowa, NJ. https://doi.org/10.1385/0-89603-421-6:149

Download citation

  • DOI: https://doi.org/10.1385/0-89603-421-6:149

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-421-1

  • Online ISBN: 978-1-59259-578-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics