Skip to main content

Design of Retroviral Expression Vectors

  • Protocol
Recombinant Gene Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 62))

Abstract

Several characteristics of amphotropic murine retroviruses have made them useful as vectors for gene transfer with some distinct advantages over other methods of transduction. First, the normal replication cycle of retroviruses includes integration of the viral genome into the host’s chromosomal DNA, and these viruses have evolved a very efficient mechanism of stable gene transfer for this purpose. Second, because the integration machinery uses the termini of the viral DNA as substrate, insertion of viral DNA takes place in a predictable manner with the long terminal repeat (LTR) sequences flanking the genes they carry. Third, retroviruses have a broad host range, which allows gene transfer and expression of foreign genes in many cell types, even including some cell types that are refractory to gene transfer by other means. Fourth, a cytopathic effect on infected cells is lacking, which is especially important for gene expression studies and the generation of stable cell lines. Fifth, all retrovial proteins required for the assembly of infectious virions can be supplied in trans, thereby enabling the expression of exogenous genes up to approx 8 kbp. Finally, retroviral vectors can be conveniently manipulated in plasmid form and, as discussed below, are somewhat flexible in terms of vector design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10, 4239–4242.

    PubMed  CAS  Google Scholar 

  2. Miller, A. D., Miller, D. G., Garcia, J. V., and Lynch, C. M. (1993) Use of retroviral vectors for gene transfer and expression, in Methods in Enzymology, Vol. 217 (Wu, R., ed.), Academic, New York, pp. 581–599.

    Google Scholar 

  3. Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895–2902.

    PubMed  CAS  Google Scholar 

  4. Danos, O and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Science USA 85, 6460–6464.

    Article  CAS  Google Scholar 

  5. Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406.

    PubMed  CAS  Google Scholar 

  6. Miller, A. D. and Rosman, G. J. (1989) Improved retroviral vectors for gene transfer and expression. BioTechniques 7, 980–990.

    PubMed  CAS  Google Scholar 

  7. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    Article  PubMed  CAS  Google Scholar 

  8. Markowitz, D., Goff, S., and Bank, A. (1988) A safe packaging cell line for gene transfer. Separating viral genes on two different plasmids. J. Virol. 62, 1120–1124.

    PubMed  CAS  Google Scholar 

  9. Adams, R. M., Soriano, H. E., Wang, M., Darlington, G., Steffen, D., and Ledley, F. D. (1992) Transduction of primary human hepatocytes with amphotropic and xenotropic retroviral vectors. Proc. Natl. Acad. Sci. USA 89, 8981–8985.

    Article  PubMed  CAS  Google Scholar 

  10. Miller, A. D., Garcia, J. V., von Suhr, N., Lynch, C. M., Wilson, C., and Eiden, M. V. (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol. 65, 222–2224.

    Google Scholar 

  11. Bayle, J.-Y., Johnson, L. G., George, J. A. S., Boucher, R. C., and Olsen, J. C. (1993) High efficiency gene transfer to primary monkey airway epithelial cells with retrovirus vectors using the GALV receptor. Human Gene Therapy 4, 161–170.

    Article  PubMed  CAS  Google Scholar 

  12. Yee, J. K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C., and Friedmann, T. (1994) A general method for the generation of high-titer, pantropic retroviral vectors: Highly efficient infection of primary hepatocytes. Proc. Natl. Acad. Sci. USA 91, 9564–9568.

    Article  PubMed  CAS  Google Scholar 

  13. Kasahara, N., Dozy, A. M., and Kan, Y. W. (1994) Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376.

    Article  PubMed  CAS  Google Scholar 

  14. Bates, P., Young, J. A., and Varmus, H. E. (1993) A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  15. Morgenstern, J. P. and Land, H. (1990) Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596.

    Article  PubMed  CAS  Google Scholar 

  16. Stockshlaeder, M. A., Storb, R., Osborne, W. R., and Miller, A. D. (1991) L-histidinol provides effective selection of retrovirus-vector-transduced keratinocytes without impairing their proliferative potential. Human Gene Therapy 2, 33–39.

    Article  Google Scholar 

  17. Hawley, R. G., Lieu, F. H. L., Fong, A. Z. C., and Hawley, T. S. (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Therapy 1, 136–138.

    PubMed  CAS  Google Scholar 

  18. Emerman, M. and Temin, H. M. (1984) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 459–467.

    Article  CAS  Google Scholar 

  19. Emerman, M. and Temin, H. M. (1986) Comparison of promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 14, 9381–9396.

    Article  PubMed  CAS  Google Scholar 

  20. Olsen, J. C., Johnson, L. G., Wong-Sun, M. L., Moore, K. L., Swanstrom, R., and Boucher, R. C. (1993) Efficient retrovirus-mediated gene transfer with long term expression in cystic fibrosis airway epithelial cells. Nucleic Acids Res. 21, 663–669.

    Article  PubMed  CAS  Google Scholar 

  21. Adam, M. A., Ramesh, N., Miller, A. D., and Osborne, W. R. (1991) Internal initiation of translation in retroviral vectors carrying picornavirus 5′ nontranslated regions. J. Biol. 65, 4985–4990.

    CAS  Google Scholar 

  22. Morgan, R. A., Coulture, L., Elroy-Stein, O., Ragheb, J., Moss, B., and Anderson, W. F. (1992) Retroviral vectors containing putative internal ribosome entry sites. Development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res. 20, 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  23. Aran, J. M., Gottesman, M. M., and Pastan, I. (1994) Drug-related coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector. Proc. Natl. Acad. Sci. USA 91, 3176–3180.

    Article  PubMed  CAS  Google Scholar 

  24. Dranoff, G., Jaffee, E. M., Lazenby, A., Golumbeck, P., Levitsky, H., Brose, K., Jackson, V., Hamada, H., Pardoll, D. M., and Mulligan, R. C. (1993) Vaccination with irradiated tumor cells engineered to secrete murine GMCSF stimulates potent, specific and long lasting antitumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  25. Zitvogel, L., Tahara, H., Cat, Q., Storkus, W. J., Muller, G., Wolf, S. F., Gately, M., Robbins, P. D., and Lotze, M. T. (1994) Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum. Gene Ther. 5, 1493–1506.

    Article  PubMed  CAS  Google Scholar 

  26. Yu, S.-F., von Ruden, T., Kantoff, P. W., Garber, C., Seiberg, M., Ruther, U., Anderson, W. F., Wagner, E. F., and Gilboa, E. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Nat. Acad. Sci. USA 83, 3194–3198.

    Article  PubMed  CAS  Google Scholar 

  27. Guild, B. C., Finer, M. H., Housman, D. E., and Mulligan, R. C. (1988) Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopotetic cells in vivo. J. Virol. 62, 3795–3801.

    PubMed  CAS  Google Scholar 

  28. Faustinella, F., Kwon, H., Serrano, F., Belmont, J. W., Caskey, C. T., and Aguilar-Cordova, E. (1994) A new family of murine retroviral vectors with extended multiple cloning sites for gene insertion. Hum. Gene Ther. 5, 307–312.

    Article  PubMed  CAS  Google Scholar 

  29. Hantzopoulos, P. A., Sullenger, B. A., Ungers, G., and Gilboa, E. (1989) Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc. Natl. Acad. Sci. USA 86, 3519–3523.

    Article  PubMed  CAS  Google Scholar 

  30. Sullenger, B. A., Lee, T. C., Smith, C. A., Ungers, G. E., and Gilboa, E. (1990) Expression of chimeric tRNA-driven antrisense transcripts renders NIH 3T3 cells highly resistant to Moloney murine leukemia virus replication. Mol. Cell Biol. 10, 6512–6523.

    PubMed  CAS  Google Scholar 

  31. Sullenger, B. A., and Cech, T. R. (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262, 1566–1569.

    Article  PubMed  CAS  Google Scholar 

  32. Chuah, M. K. L., Vandendriessche, T., Chang, H. K., Ensoli, B., and Morgan, R. A. (1994) Inhibition of human immunodeficiency virus type-1 by retroviral vectors expressing antisense-TAR. Hum. Gene Ther. 5, 1467–1475.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, S. W., Gallardo, H. F., Gilboa, E., and Smith, C. (1994) Inhibition of human immunodeficiency virus type 1 in human T cells by a potent rev response element decoy consisting of the 13-nucleotide minimal rev-binding domain. J. Virol. 68, 8254–8264.

    PubMed  CAS  Google Scholar 

  34. Wilke, M., Bout, B., Verbeek, B., Kappers, W., Verkerk, T., Valerio, D., and Scholte, B. (1992) Amphotropic viruses with a hybrid long terminal repeat as a tool for gene therapy of cystic fibrosis. Biochem. Biophys. Res. Comm. 187, 187–194.

    Article  PubMed  CAS  Google Scholar 

  35. van den Wollenberg, D. J., Hoeben, R. C., van Ormondt, H., and van der Eb, A. J. (1994) Insertion of the human cytomegalovirus enhancer into a myeloproliferative sarcoma virus long terminal repeat creates a high-expression retroviral vector. Gene 144, 237–241.

    Article  PubMed  Google Scholar 

  36. King, W., Patel, M. D., Lobel, L. I., Goff, S. P., and Nguyen-Huu, M. C. (1985) Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science 228, 554–558.

    Article  PubMed  CAS  Google Scholar 

  37. Hubbard, S. C., Walls, L., Ruley, H. E., and Muchmore, E. A. (1994) Generation of chinese hamster ovary cell glycosylation mutants by retroviral insertional mutagenesis. Integration into a discrete locus generates mutants expressing high levels of N-glycolylneuramunic acid. J. Biol. Chem. 269, 3717–3724.

    PubMed  CAS  Google Scholar 

  38. von Melchner, H. and Ruley, H. E. (1989) Identification of cellular promoters by using a retrovirus promoter trap. J. Virol. 63, 3227–3233.

    Google Scholar 

  39. Chen, Z., Friedrich, G. A., and Soriano, P. (1994) Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301.

    Article  PubMed  CAS  Google Scholar 

  40. Chang, W., Hubbard, S. C., Friedel, C., and Ruley, H. E. (1993) Enrichment of insertional mutants following retrovirus gene trap selection. Virology 193, 737–747.

    Article  PubMed  CAS  Google Scholar 

  41. Fields-Berry, S. C., Halliday, A. L., and Cepko, C. L. (1992) A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl. Acad. Sci. USA 89, 693–697.

    Article  PubMed  CAS  Google Scholar 

  42. Price, J., Turner, D., and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84 156–160.

    Article  PubMed  CAS  Google Scholar 

  43. Olsen, J. C., and Sechelski, J. (1995) Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA. Hum. Gene Ther. 6, 1195–1202.

    Article  PubMed  CAS  Google Scholar 

  44. Kotani, H., Newton III, P. B., Zhang, S., Chiang, Y. L., Otto, E., Weaver, L., Blaese, R. M., Anderson, W. F., and McGarrity, G. J. (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum. Gene Ther. 5, 19–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Comstock, K.E., Watson, N.F., Olsen, J.C. (1997). Design of Retroviral Expression Vectors. In: Tuan, R.S. (eds) Recombinant Gene Expression Protocols. Methods in Molecular Biology, vol 62. Humana Press. https://doi.org/10.1385/0-89603-480-1:207

Download citation

  • DOI: https://doi.org/10.1385/0-89603-480-1:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-480-8

  • Online ISBN: 978-1-59259-548-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics