Skip to main content

Methods for Efficient Retrovirus-Mediated Gene Transfer to Mouse Hematopoietic Stem Cells

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 7))

  • 649 Accesses

Abstract

A variety of genetic and acquired diseases could conceivably be treated by gene therapy targeted to hematopoietic stem cells (HSC). Inevitably, the effort to develop reliable methods of gene transfer into stem cells has raised many questions about their biology and role in the development and maintenance of hematopoiesis. As a result, we currently have a convergence of research goals in the areas of stem cell biology and gene therapy. Murine models for stem cell transduction have played a useful role in establishing two basic principles: retroviral vectors can transduce pluripotent self-renewing hematopoietic stem cells and retroviral vectors can express foreign gene products in the differentiated progeny of stem cells. Murine models also have allowed the identification of several key factors that allow efficient transduction of stem cells and each of these is dealt with here. However, methods for stem cell transduction that are effective with mouse cells have only been partially successful in dog, nonhuman primate, and human models. Whereas scale-up of stem cell transduction procedures for human applications will present unique technical problems, mouse models may yet provide further insight into the mechanisms of efficient stem cell gene transfer that can then be used to design enhanced and reproducible protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemischka, I. R., Raulet, D. H., and Mulligan, R. C. (1986) Developmental potential and dynamic behaviour of hematopoietic stem cells. Cell 45, 917–927.

    Article  CAS  Google Scholar 

  2. Snodgrass, R. and Keller, G. (1987) Clonal fluctuation within the hematopoietic system of mice reconstituted with retrovirus-infected stem cells. EMBOJ 6, 3955–3960.

    Article  CAS  Google Scholar 

  3. Capel, B., Hawley, R., Covarrubias, L., Hawley, T., and Mintz, B. (1989) Clonal contribution of small numbers of retrovirally marked hematopoietic stem cells engrafted in unirradiated neonatal W/Wv mice. Proc. Natl. Acad. Sci. USA 86, 4564–4568.

    Article  CAS  Google Scholar 

  4. Keller, G. and Snodgrass, R. (1990) Life span of multipotential hematopoietic stem cells in vivo. J. Exp Med 171, 1407–1418.

    Article  CAS  Google Scholar 

  5. Jordan, C. T. and Lemischka, I. R. (1990) Clonal and systemic analysis of long term hematopoiesis in the mouse. Genes Dev 4, 220–232.

    Article  CAS  Google Scholar 

  6. Spangrude, G. J. (1992) Characteristics of the hematopoietic stem cell compartment in adult mice. Int J Cell Cloning 10, 277–285.

    Article  CAS  Google Scholar 

  7. Dorshkind, K. (1990) Regulation of hemopoiesis by bone marrow stromal cells and their products, Ann. Rev. Immunol. 8, 111–137.

    Article  CAS  Google Scholar 

  8. Ogawa, M. (1993) Differentiation and proliferation of hematopoletic stem cells. Blood 81, 2844–2853.

    Article  CAS  Google Scholar 

  9. Metcalf, D. (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339, 27–30.

    Article  CAS  Google Scholar 

  10. Metcalf, D. (1993) Hematopoietic regulators: redundancy or subtlety. Blood 82, 3515–3523.

    Article  CAS  Google Scholar 

  11. Metcalf, D. (1984) Clonal Culture of Hemopoietic Cells: Techniques and Applications. Elsevier, Amsterdam.

    Google Scholar 

  12. Suda, T., Suda, J., and Ogawa, M. (1983) Single-cell origin of mouse hematopoietic colonies expressing multiple lineages in variable combinations. Proc. Natl. Acad. Sci. USA 80, 6689–6693.

    Article  CAS  Google Scholar 

  13. McNiece, I. K., Bertoncello, I., Kriegler, A. B., and Quesenberry, P. J. (1990) Colony-forming cells with high proliferative potential (HPP-CFC). Int. J. Cell Cloning 8, 146–160.

    Article  CAS  Google Scholar 

  14. Dexter, T. M., Allen, T. D., and Lajtha, L. G. (1977) Conditions controlling the proliferation of hematopoietic stem cells in vitro. J. Cell Physiol. 91, 335–344.

    Article  CAS  Google Scholar 

  15. Spooncer, E. and Dexter, T. M. (1984) Long-term bone marrow cultures, in Current Methodology in Experimental Hematology, vol. 48 (Baum, S. J., ed.), Bibliotheca Haematologica, Springer Verlag, Berlin, pp. 366–383.

    Google Scholar 

  16. Fulop, G. M. and Philips, R. A. (1989) Use of scid mice to identify and quantitate lymphoid-restricted stem cells in long-term bone marrow cultures. Blood 74, 1537–1544.

    Article  CAS  Google Scholar 

  17. Whitlock, C. A. and Witte, O. N. (1982) Long term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. USA 79, 3608–3612.

    Article  CAS  Google Scholar 

  18. Dorshkind, K. and Witte, O. N. (1987) Long-term murine hemopoietic cultures as model systems for analysis of B-lymphocyte differentiation, in Diffirentiation of B Lymphocytes, vol. 135 (Paige, C. J. and Gisler, R. H., eds.), Current Topics in Microbiology and Immunology, Springer Verlag, Berlin, pp. 23–42.

    Google Scholar 

  19. Denis, K A. and Witte, O N. (1989) Long-term lymphoid cultures in the study of B-cell differenttation, in Immunoglobulin Genes (Hoqo, T., Dorshkind, K., and Leder, P., eds), Academic, San Diego, pp. 45–59.

    Chapter  Google Scholar 

  20. Sutherland, H. J., Eaves, C J, Eaves, A. C., Dragowska, W., and Lansdorp, P. M. (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74, 1563–1570.

    Article  CAS  Google Scholar 

  21. Sutherland, H. J., Lansdorp, P M., Henkelman, D. H., Eaves, A. C, and Eaves, C. J (1990) Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad Sci USA 87, 3584–3588.

    Article  CAS  Google Scholar 

  22. Muller-Sieburg, C. E., Whitlock, C. A., and Weissman, I. L. (1986) Isolation of two early B lymphocyte progenitors from mouse marrow’ a committed pre-pre-B cell and a clonogemc Thy-110 hematopoietic stem cell. Cell 44, 653–662.

    Article  CAS  Google Scholar 

  23. Till, J E and McCullogh, E. A. (1961) A direct measure of the radiation sensitivity of normal mouse marrow cells. Radiat Res 14, 213–222.

    Article  CAS  Google Scholar 

  24. Ploemacher, R. E. and Brons, N. H. C (1988) Isolation of hematopoietic stem cell subsets from murine bone marrow. II. Evidence for an early precursor of day-12 CFU-S and cells associated with radioprotective ability. Exp Hematol 16, 27–32.

    CAS  Google Scholar 

  25. Ploemacher, R.E. and Brons, N.H C (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following Irradiation. Evidence for a pre-CFU-S cell. Exp. Hematol 17, 263–266.

    CAS  Google Scholar 

  26. Fletcher, F A., Williams, D. E., Maliszewski, C., Anderson, D., Rives, M., and Belmont, J W (1990) murine leukemia inhibitory factor (LIF) enhances retroviral-vector infection efficiency of hematopoietic progenitors Blood 76, 1098–1103.

    Article  CAS  Google Scholar 

  27. Harrison, D. E (1980) Competitive repopulation: a new assay for long-term stem cells functional capacity. Blood 55, 77–81.

    Article  CAS  Google Scholar 

  28. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C., and Eaves, C. J (1990) Quantiative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad. Ser. USA 87, 8736–8740.

    Article  CAS  Google Scholar 

  29. Spangrude, G. J., Heimfeld, S., and Weissman, I. L. (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62.

    Article  CAS  Google Scholar 

  30. Spangrude, G J and Scollay, R. (1990) A simplified method for enrichment of mouse hematopoietic stem cells. Exp Hematol. 18, 920–926.

    CAS  Google Scholar 

  31. Smith, L. G., Weissman, I. L., and Heimfeld, S. (1991) Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl. Acad Sei USA 88, 2788–2792.

    Article  CAS  Google Scholar 

  32. Heimfeld, S. and Weissman, I. L. (1991) Development of mouse hematopoiettc lineages. Curr. Top Dev. Biol 25, 155–175.

    Article  CAS  Google Scholar 

  33. Chung, L. L. and Johnson, G. R. (1992) Long-term hemopotetic repopulation by Thy-110, Lin−, Ly6A/E+cells. Exp Hematol 20, 1309–1315.

    Google Scholar 

  34. Okada, S., Nakauchi, H, Nagayoshi, K., Nishikawa, S., Miura, Y, and Suda, T. (1992) In vivo and in vitro stem cell function of c-kit and Sea-1-positive murine hematopoietic cells. Blood 80, 3044–3050.

    Article  CAS  Google Scholar 

  35. Fleming, W. H., Alpern, E. J., Uchida, N., Ikuta, K., Spangrude, G. J., and Weissman, I. L. (1993) Functional heterogeneity is associated with the cell cycle status of murine hematopotetic stem cells, J, Cell Biol. 122, 897–902.

    Article  CAS  Google Scholar 

  36. Jurecic, R., Van, N. T., and Belmont, J. W. (1993) Enrichment and functional characterization of Sea-1+WGA+, Lin−WGA+, Lin−Sca-1+and Lin−Sca-I+WGA+bone marrow cells from mice with an LY-6a haplotype. Blood 82, 2673–2683.

    Article  CAS  Google Scholar 

  37. Rebel, V. I., Dragowska, W., Eaves, C. J., Humphries, R. K., and Lansdorp, P. M. (1994) Amplification of Sea-l+Lin−WGA+cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood 83, 128–136.

    Article  CAS  Google Scholar 

  38. Heimfeld, S., Hudak, S., Weissman, I., and Renmck, D. (1991) The in vitro response of phenotypically defined mouse stem cells and myeloerythroid progenitors to single or multiple growth factors. Proc. Natl. Acad Sci USA 88, 9902–9906.

    Article  CAS  Google Scholar 

  39. Li, C. L. and Johnson, G. R. (1992) Rhodamine reveals heterogeneity within murine Lin−, Sea-1+hemopoietic stem cells. J. Exp Med 175, 1443–1447.

    Article  CAS  Google Scholar 

  40. Muench, M. O., Schneider, J. G., and Moore, M. A. S. (1992) Interactions among colony-stimulating factors, IL-β, IL-6, and kit-hgand in the regulation of primitive murine hematopoietic cells. Exp Hematol. 20, 339–349.

    CAS  Google Scholar 

  41. Weilbaecher, K., Weissman, I., Blume, K., and Heimfeld, S. (1991) Culture of phenotyplcally defined hematopoietic stem cells and other progenitors at limiting dilution on Dexter monolayers. Blood 78, 945–952.

    Article  CAS  Google Scholar 

  42. Vries de, P., Brasel, K. A., Elsenman, J. R., Alpert, A. R., and Williams, D. E. (1991) The effect of recombinant mast cell growth factor on purified murine hematopoletic stem cells J. Exp. Med 173, 1205–1211.

    Article  Google Scholar 

  43. Bodine, D. M., Orlic, D., Birkett, N. C., Seidel, N. E, and Zsebo, K M (1992) Stem cell factor increases colony-forming unit-spleen number in intro in synergy with interleukin-6, and in vivo in St/St d mice as a single factor. Blood 79, 913–919.

    Article  CAS  Google Scholar 

  44. Miura, N., Okada, S., Zsebo, K. M., Miura, Y., and Suda, T. (1993) Rat stem cell factor and IL-6 preferentially support the proliferation of c-kit-positive murine hemopoietic cells rather than their differentiation. Exp. Hematol 21, 143–149.

    CAS  Google Scholar 

  45. Escary, J., Perreau, J., Dumenul, D., Ezine, S., and Brulet, P. (1993) Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 363, 361–364.

    Article  CAS  Google Scholar 

  46. Joyner, A., Keller, G., Phillips, R. A., and Bernstein, A. (1983) Retrovirus transfer of a bacterial gene into mouse hematopoietic progenitor cells. Nature 305, 556–558.

    Article  CAS  Google Scholar 

  47. Williams, D. A., Lemischka, I. R., Nathan, D. G., and Mulligan, R. C. (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480.

    Article  CAS  Google Scholar 

  48. Dick, J E., Magli, M C., Huszar, D., Phillips, R A., and Bernstein, A (1985) Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42, 71–79.

    Article  CAS  Google Scholar 

  49. Kantoff, P. W., Freeman, S. M., and Anderson, W. F. (1988) Prospects for gene therapy for immunodeficiency diseases. Ann Rev. Immunol. 6, 581–594.

    Article  CAS  Google Scholar 

  50. Cournoyer, D., Scarpa, M., Moore, K. A., Fletcher, F. A., MacGregor, G. R., Belmont, J. W., and Caskey, C. T. (1991) Gene replacement therapy: human and animal model progress, in Etiology of Human Disease at the DNA Level (Lindsten, J. and Pettersson, U., eds.), Raven, New York, pp. 199–203.

    Google Scholar 

  51. Cournoyer, D and Caskey, C T (1993) Gene therapy of the immune system. Ann Rev Immunol 11, 297–329.

    Article  CAS  Google Scholar 

  52. Moore, K A., Fletcher, F. A., Villalon, D. K., Utter, A E, and Belmont, J. W (1990) Human adenosine deammase expression in mice. Blood 75, 2085–2092.

    Article  CAS  Google Scholar 

  53. van Beusechem, V W., Kuklerm, A, Emerhand, M P W., Bakx, T A, van der Eb, A. J., van Bekkum, D. W., and Valeno, D. (1990) Expression of human adenosine deammase in mice transplanted with hemopoietic stem cells infected with amphotropic retroviruses. J Exp Med 172, 729–736.

    Article  Google Scholar 

  54. Einerhand, M. P. W., Bakx, T. A., Kukler, A., and Valerio, D. (1993) Factors affecting the transduction of pluripotent hematopoietic stem cells: long-term expression of a human adenosme deaminase gene in mice Blood 81, 254–263.

    Article  CAS  Google Scholar 

  55. Bodine, D.M., McDonagh, K T, Seidel, N. E, and Nienhuis, A. W. (1991) Survival and retro virus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection Exp Hematol 19, 206–212.

    CAS  Google Scholar 

  56. Barker, J E., Wolfe, J.H., Rowe, L B, and Birkenmeier, E. H. (1993) Advantages of gradient vs. 5-fluorouracil enrichment of stem cells for retroviral-medi-ated gene transfer. Exp Hematol 21, 47–54.

    CAS  Google Scholar 

  57. Chertkov, J. L., Jiang, S., Lutton, J. D., Harrison, J., Levere, R. D, Tiefenthaler, M., and Abraham, N G (1993) The hematopotetic stromal microenvironment promotes retrovirus-mediated gene transfer into hematopoiettc stem cells. Stem Cells 11, 218–227.

    Article  CAS  Google Scholar 

  58. Bodine, D M., Karlsson, S., and Nienhuis, A. W. (1989) Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad Sci USA 86, 8897–8901.

    Article  CAS  Google Scholar 

  59. Fletcher, F. A., Williams, D. E., Maliszewski, C., Anderson, D., Rives, M., and Belmont, J. W. (1990) Murine leukemia inhibitory factor (LIF) enhances retroviral-vector infection efficiency of hematopoietic progenitors Blood 76, 1098–1103.

    Article  CAS  Google Scholar 

  60. Fletcher, F. A., Moore, K. A, Ashkenazi, M., De Vries, P., Overbeek, P A, Williams, D. E., and Belmont, J. W (1991) Leukemia inhibitory factor improves survival of retroviral vector-infected hematopoietic stem cells in vitro, allowing efficient long-term expression of vector-encoded human adenosine deaminase in vivo. J. Exp Aed 174, 837–845.

    Article  CAS  Google Scholar 

  61. Luskey, B. D., Rosenblatt, M., Zsebo, K., and Williams, D. A. (1992) Stem cell factor, interleukin-3, and interleukin-6 promote retroviral-mediated gene transfer into murine hematopotetic stem cells. Blood 80, 396–402.

    Article  CAS  Google Scholar 

  62. Szilvassy, S. J., Fraser, C. C., Eaves, C. J., Lansdorp, P. M., Eaves, A. C., and Humphrtes, R. K. (1989) Retrovirus-mediated gene transfer to purified hemopoietic stem cells with long-term lympho-myelopotetrc repopulating abihty. Proc. Natl. Acad. Sci. USA 86, 8798–8802.

    Article  CAS  Google Scholar 

  63. Spain, L. M. and Mulligan, R. C. (1992) Purification and characterization of retrovirally transduced hematopotettc stem cells. Proc. Natl. Acad Sci. USA 89, 3790–3794.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Belmont, J.W., Jurecic, R. (1997). Methods for Efficient Retrovirus-Mediated Gene Transfer to Mouse Hematopoietic Stem Cells. In: Robbins, P.D. (eds) Gene Therapy Protocols. Methods in Molecular Medicine, vol 7. Humana, Totowa, NJ. https://doi.org/10.1385/0-89603-484-4:223

Download citation

  • DOI: https://doi.org/10.1385/0-89603-484-4:223

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-484-6

  • Online ISBN: 978-1-59259-591-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics