Skip to main content

Use of Fluorescence Spectroscopy to Study the Regulation of Small G Proteins

  • Protocol
Transmembrane Signaling Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 84))

  • 567 Accesses

Abstract

The Ras-like low-molecular-weight guanosine triphosphate (GTP)-binding proteins form a superfamily whose members participate in a variety of biological pathways, including the regulation of cell growth and differentiation, vesicular transport, and cytoskeletal organization (1). In all cases, these GTP-binding proteins appear to act as molecular switches by cycling between an inactive guanosine diphosphate (GDP)-bound state and an active GTP-bound state. This cycle is tightly regulated by distinct proteins; in particular, the exchange of GDP to GTP is stimulated by guanine nucleotide exchange factors (GEFs), and the hydrolyses of GTP back to GDP is catalyzed by GTPase-activating proteins (GAPS) (2). In some cases, a third class of proteins participates in the regulation of the GTP-binding/GTPase cycle by inhibiting GDP dissociation (and thus have been designated the GDP-dissociation inhibitors or GDIs) and GTP hydrolysis and stimulating the dissociation of the GTP-binding protein from membranes (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macara T. G., Lounsbury K. M., Richards S. A., McKiernan C., and Bar-Sagi D. (1996) The Ras superfamily of GTPases. FASEB J 10, 625–630.

    PubMed  CAS  Google Scholar 

  2. Boguski M S and McCormick F. (1993) Proteins regulating Ras and its relatives. Nature 366, 643–654.

    Article  PubMed  CAS  Google Scholar 

  3. Hart M J., Yoshuo M., Leonard D, Witte O. N., Evans T, and Cerrone R A. (1992) A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein Cdc42Hs Science 258, 812–815

    Article  PubMed  CAS  Google Scholar 

  4. Johnson P. I. and Pringle J R (1990) Molecular characterization of CDC42, a Saccharomyces cerevzszae Gene involved in the development of cell polarity J Cell Biol. 111, 143–152.

    Article  PubMed  CAS  Google Scholar 

  5. Kozma R., Ahmed S., Best A., and Lim L (1995) The Ras-related protein Cdc42Hs and bradykmm promote formation of peripheral actin microspekes and filopodia in SWISS 3T3 fibroblasts Mol. Cell Biol 15, 1942–1952.

    PubMed  CAS  Google Scholar 

  6. Nobes C. D. and Hall A. (1995) Rho, Rat, and Cdc4 GTPases regulate the assembly of multrmolecular focal complexes assocrated with actm stress fibres, lamellipodra, and frlopodta. Cell 81, 53–62

    Article  PubMed  CAS  Google Scholar 

  7. Bagrodra S, Derijard B, Davrs R. J., and Cerione R. A. (1995) Cdc42 and PAK-mediated signaling leads to jun kinase and p38 mrtogen-activated protein kinase activaton. J Biol Chem 270, 27,995–27,998

    Article  Google Scholar 

  8. Coso O. A., Chiartello M., Yu J., Teramoto H., Crespo P., Xu N., Miki T., and Gutkind J S. (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK srgnaling pathway. Cell 81, 1137–1146

    Article  PubMed  CAS  Google Scholar 

  9. Minden A., Lin A., Claret Abo A, and Karm M. (1995) Selectrve activation of the JNK srgnalling cascade and c-jun transcriptional activity by the small GTPases rac and Cdc42Hs. Cell 81, 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  10. Olson M E, Ashworth A., and Hall A. (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  11. Hall A. (1992) Signal transduction through small GTPases-A tale of two GAPS Cell 69, 389–391.

    Article  PubMed  CAS  Google Scholar 

  12. Barford E. T., Zheng Y., Kuang W., Hart M J., Evans T., Cerione R. A., and Ashkenazi A. (1993) Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. J Biol Chem 268, 26,059–26,062.

    Google Scholar 

  13. Hart M. J., Eva A, Evans T., Aaronson S. A., and Cerione R. A. (1991) Catalysis of guanme nucleotide exchange on the CDC42Hs protein by the dbl oncogene product Nature 354, 31l–314

    Article  Google Scholar 

  14. Manser E., Leung T., Salihuddin H., Zhao Z., and Lim L. (1994) A bram serine/threomne protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46.

    Article  PubMed  CAS  Google Scholar 

  15. Leonard D. A, Evans T., Hart M J, Cerrone R A, and Manor D (1994) Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using fluorescence spectroscopy Biochemistry 33, 12,323–12,328.

    Article  PubMed  CAS  Google Scholar 

  16. Nomanbhoy T. K, Leonard D. A., Manor D., and Certone R. A. (1996) Investigation of the GTP-binding/GTPase Cycle of Cdc42Hs using extrinsic reporter group fluorescence. Biochemistry 35 4602–4608.

    Article  PubMed  CAS  Google Scholar 

  17. Zheng Y, Cerrone R A., and Bender A (1994) Control of the vYeast bud-site assembly GTPase Cdc42 J Biol Chem 269, 2369–2372

    PubMed  CAS  Google Scholar 

  18. Nomanbhoy T K. and Certone R A (1996) Characterization of the interaction between RhoGDI and Cdc42Hs using fluorescence spectroscopy J Biol Chem 271, 10,004–10,009.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Nomanbhoy, T., Cerione, R.A. (1998). Use of Fluorescence Spectroscopy to Study the Regulation of Small G Proteins. In: Bar-Sagi, D. (eds) Transmembrane Signaling Protocols. Methods In Molecular Biology™, vol 84. Humana Press. https://doi.org/10.1385/0-89603-488-7:237

Download citation

  • DOI: https://doi.org/10.1385/0-89603-488-7:237

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-488-4

  • Online ISBN: 978-1-59259-568-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics