Skip to main content

Measurement of Recovery of Function Following Whole Muscle Transfer, Myoblast Transfer, and Gene Therapy

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 18))

  • 3721 Accesses

Abstract

For a skeletal muscle tissue engineer, the most important issue following an experimental intervention is the evaluation of the recovery of the functional capabilities of the tissue, relative to those of the control tissue. Whether investigators perform whole muscle transfers with spontaneous (1) or surgical (2) vascular and nerve repair, myoblast transfers (3), or manipulations of muscle-specific genes (4,5), the question remains the same: Has the intervention impaired, maintained, or enhanced the functional capabilities of the skeletal muscles involved? In each case, determining structure–function relationships is of vital importance because structure–function relationships are frequently disrupted following an intervention, so that muscle mass and total muscle fiber cross-sectional area (CSA) are not different from control values, but function is impaired, or both are impaired, but with different magnitudes of impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlson, B. M. and Faulkner, J. A. (1996) The regeneration of non-innervated muscle grafts and marcaine-treated muscles in young and old rats. J. Gerontol. 51, B43–B49.

    CAS  Google Scholar 

  2. Guelinckx, P. J., Faulkner, J. A., and Essig, D. A. (1988) Neurovascular-anastomosed muscle grafts in rabbits: functional deficits result from tendon repair. Muscle Nerve 11, 745–751.

    Article  CAS  Google Scholar 

  3. Mendell, J. R., Kissel, J. T., Amato, A. A., King, W., Signore, L., Prior, T. W., et al. (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N. Engl. J. Med. 333, 832–838.

    Article  CAS  Google Scholar 

  4. Cox, G. A., Cole, N. M., Matsumura K., Phelps, S. F., Hauschka, S. D., Campbell, K. P., Faulkner, J. A., and Chamberlain, J. S. (1993) Overexpression of dystrophin in transgenic MDX mice eliminates dystrophic symptoms without toxicity. Nature 364, 725–729.

    Article  CAS  Google Scholar 

  5. Phelps, S. F., Howser, M. A., Cole, N. M., Raphael, J. A., Hinkle, R. T., Faulkner, J. A., and Chamberlain, J. S. (1995) Prevention of muscular dystrophy by full length and internally truncated dystrophins. Human Mol. Genet. 4, 1251.

    Article  CAS  Google Scholar 

  6. Burke, R. E. and Edgerton, V. R. (1975) Motor unit properties and selective involvement in movement. Exerc. Sport Sci. 3, 31–81.

    CAS  Google Scholar 

  7. Segal, S. S., White, T. P., and Faulkner, J. A. (1986) Architecture, composition and contractile properties of rat soleus muscle grafts. Am. J. Physiol. 250 (Cell Physiol. 19): C474–C479.

    CAS  Google Scholar 

  8. Taylor, J. A. and Kandarian, S. C. (1994) Advantage of normalizing force production to myofibrillar protein in skeletal muscle cross-sectional area. J. Appl. Physiol. 76, 974–978.

    Article  CAS  Google Scholar 

  9. Ashton-Miller, J. A., He, Y., Kadhiresan, V. A., McCubbrey, D., and Faulkner, J. A. (1992) An apparatus to measure in vivo biomechanical behavior of dorsi-and plantarflexors of the mouse ankle. J. Appl. Physiol. 72, 1205–1211.

    CAS  Google Scholar 

  10. Miller, S. W., Hassett, C. A., White, T. P., and Faulkner, J. A. (1994) Recovery of medial gastrocnemius muscle grafts in rats: implications for the plantarflexor group. J. Appl. Physiol. 77, 2773–2777.

    CAS  Google Scholar 

  11. Brooks, S. V. and Faulkner, J. A. (1991) Forces and powers of slow and fast skeletal muscles in mice during repeated contractions. J. Physiol. (London) 436, 701–710.

    CAS  Google Scholar 

  12. Brooks, S. V. and Faulkner, J. A. (1988) Contractile properties of skeletal muscles from young, adult, and aged mice. J. Physiol. (London) 404, 71–82.

    CAS  Google Scholar 

  13. Mutungi, G. and Ranatunga, K. W. (1996) Tension relaxation after stretch in resting mammalian muscle fibers: stretch activation at physiological temperatures. Biophys. J. 70, 1432–1438.

    Article  CAS  Google Scholar 

  14. McCully, K. K., and Faulkner, J. A. (1983) Length-tension relationship of mammalian diaphragm muscles. J. Appl. Physiol. 54, 1681–1686.

    CAS  Google Scholar 

  15. Faulkner, J. A., Claflin, D. R., McCully, K. K., and Jones, D. A. (1982) Contractile properties of bundles of fiber segments from skeletal muscles. Am. J. Physiol. 243 (Cell Physiol. 12): C66–C73.

    CAS  Google Scholar 

  16. Lannergren, J. and Westerblad, H. (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J. Physiol. (London) 390, 285–293.

    CAS  Google Scholar 

  17. Godt, R. E. and Lindey, B. D. (1982) Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J. Gen. Physiol. 80, 279–297.

    Article  CAS  Google Scholar 

  18. Larsson, L. and Moss, R. L. (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J. Physiol. (London) 472, 595–614.

    CAS  Google Scholar 

  19. Lynch, G. S., Duncan, N. D., Campbell, S. P., and Williams, D. A. (1995) Endurance training effects on the contractile activation characteristics of single muscle fibres from the rat diaphragm. Clin. Exp. Pharmacol. Physiol. 22, 430–437.

    Article  CAS  Google Scholar 

  20. Sweeney, H. L., Corteselli, S. A., and Kushmerick, M. J. (1987) Measurements on permeabilized skeletal muscle fibers during continuous activation. Am. J. Physiol. 252 (Cell Physiol. 21), C575–C580.

    CAS  Google Scholar 

  21. Huxley, A. F. and Lombardi, V. (1980) A sensitive force transducer with resonant frequency 50 kHz. J. Physiol (London) Proc. 305, 14–16P.

    Google Scholar 

  22. Cecchi, G., Colombo, F., and Lombardi, V. (1979) A capacitance-gauge force transducer for isolated muscle fibers. J. Physiol. (London) Proc. 1–2P.

    Google Scholar 

  23. Hellam, D. C. and Podolsky, R. J. (1969) Force measurement in skinned muscle fibers. J. Physiol. (London) 200, 807–819.

    CAS  Google Scholar 

  24. Fearn, L. A., Bartoo, M. L., Myers, J. A., and Pollack, G. H. (1993) An optical fiber transducer for single myofibril force measurement. IEEE Transactions on Biomed. Eng. 40, 1127–1132.

    Article  CAS  Google Scholar 

  25. Cole, N. M. (1992) Mechanism of skeletal muscle sounds. Acoustic measures of resonant frequency and tension. Doctoral Dissertation, University of Michigan.

    Google Scholar 

  26. Ford, L. E., Huxley, A. F., and Simmons, R. M. (1977) Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. (London) 269, 441–515.

    CAS  Google Scholar 

  27. Lieber, R. L., Schmitz, M. C, Mishra, D. K., and Friden, J. (1994) Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions. J. Appl. Physiol. 11, 1926–1934.

    Google Scholar 

  28. Miller, R. A., Bookstein, F., van der Meulen, J. H., and Faulkner, J. A. (1997) Candidate biomarkers of aging: age-sensitive indices of immune and muscle function co-vary in genetically heterogeneous mice. J. Gerontol. Biol. Sci., 52, B39–B47.

    CAS  Google Scholar 

  29. Marsh, E. D., Sale, D., McComas, A. J., and Quinlan, J. (1981) Influence of joint position on ankle dorsiflexion in man. J. Appl. Physiol. 51, 160–167.

    CAS  Google Scholar 

  30. Caiozzo, V. J., Ma, E., McCue, S., Smith, E., Herrick, R. E., and Baldwin, K. M. (1992) A new animal model for modulating myosin isoform expression by altered mechanical activity. J. Appl. Physiol. 73, 1432–1440.

    CAS  Google Scholar 

  31. Fabiato, A. and Fabiato, F. (1979) Calculator programs for computing the composition of solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75, 463–505.

    CAS  Google Scholar 

  32. Miller, S. W. and Dennis, R. G. (1996) A parametric model of muscle moment arm as a function of joint angle: application to the dorsiflexor muscle group in mice. J. Biomech. 29, 1621–1624.

    CAS  Google Scholar 

  33. Segal, S. S. and Faulkner, J. A. (1985) Temperature dependent physiological stability of rat skeletal muscle in vitro. Am. J. Physiol. 248 (Cell Physiol. 17), C265–C270.

    CAS  Google Scholar 

  34. Elzinga, G., Howarth, J. V., Rail, J. A., Wilson, M. G. A., and Woledge, R. C. (1989) Variation in the normalized tetanic force of single frog muscle fibres. J. Physiol. (London) 410, 157–170.

    CAS  Google Scholar 

  35. Ranatunga, K. W. and Wylie, S. R. (1983) Temperature-dependent transitions in isometric contractions of rat muscle. J. Physiol. (London) 339, 87–95.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Faulkner, J.A., Brooks, S.V., Dennis, R.G. (1999). Measurement of Recovery of Function Following Whole Muscle Transfer, Myoblast Transfer, and Gene Therapy. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicine™, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:155

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics