Skip to main content

Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering

  • Protocol
Tissue Engineering Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 18))

Abstract

Organ transplantation has been successful since the early 1960s as a result of the success in immunologic suppression in the clinical setting (1), and has saved, and is continuing to save, countless lives, but is far from a perfect solution to tissue losses or organ failures. By far the most serious problem facing transplantation is donor scarcity. Approximately 30,000 Americans need liver transplantation each year, but only about 10% of the patients have the chance to receive a donated liver transplant (2). There is a total of approx 100,000 people in the United States with transplants, but there are more than 1 million with biomedical implants (3). Tissue engineering and cell transplantation are fields emerging to resolve the missing tissue and organ problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couch, N., Wilson, R., Hager, E., and Murray, J. (1966) Transplantation of cadaver kidneys: experience with 21 cases. Surgery 59, 183ā€“188.

    CASĀ  Google ScholarĀ 

  2. Langer, R. and Vacanti, J. (1993) Tissue engineering. Science 260, 920ā€“926.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Nerem, R. M. and Sambanis, A. (1995) Tissue engineering: from biology to biological substitutes. Tissue Eng. 1, 3ā€“13.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889ā€“895.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Aebischer, P., Salessiotis, A., and Winn, S. (1989) Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps. J. Neurosci. Res. 23, 282ā€“289.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Colton, C. (1995) Implantable biohybrid artificial organs. Cell Transplant 4, 415ā€“436.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Darquy, S. and Reach, G. (1985) Immunoisolation of pancreatic B cells by microencapsulation. An in vitro study. Diabetologia 28, 776ā€“780.

    CASĀ  Google ScholarĀ 

  8. Nyberg, S., Shirabe, K., Peshwa, M., Sielaff, T., Crotty, P., Mann, H., et al. (1993) Extracorporeal application of a gel-entrapment, bioartificial liver: demonstration of drug metabolism and other biochemical functions. Cell Transplant 2, 441ā€“452.

    CASĀ  Google ScholarĀ 

  9. Reach, G. (1993) Bioartificial pancreas. Diabet. Med. 10, 105ā€“109.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Colton, C. and Avgoustiniatos, E. (1991) Bioengineering in development of the hybrid artificial pancreas. J. Biomech. Eng. 113, 152ā€“170.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Langer, R., Winslow, D. N., and Vacanti, J. P. (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35, 1068ā€“1077.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Ma, P. X. and Langer, R. (1995) Degradation, structure and properties of fibrous nonwoven poly(glycolic acid) scaffolds for tissue engineering, in Polymers in Medicine and Pharmacy (Mikos, A. G., Leong, K. W., Radomsky, M. L., Tamada, J. A., and Yaszemski, M. J., eds.), MRS, Pittsburgh, pp. 99ā€“104.

    Google ScholarĀ 

  13. Bell, E., Rosenberg, M., Kemp, P., Gay, R., Green, G., Muthukumaran, N., and Nolte, C. (1991) Recipes for reconstituting skin. J. Biomech. Eng. 113, 113ā€“119.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Krewson (nĆ©e Beaty), C. E., Chung, S. W., Dai, W., and Saltzman, W. M. (1994) Cell aggregation and neurite growth in gels of extracellular matrix molecules. Biotechnol. Bioeng. 43, 555ā€“562.

    Google ScholarĀ 

  15. Yannas, I. V. (1994) Applications of ECM analogs in surgery. J. Cell. Biochem. 56, 188ā€“191.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Pongor, P., Betts, J., Muckle, D., and Bentley, G. (1992) Woven carbon surface replacement in the knee: independent clinical review. Biomaterials 13, 1070ā€“1076.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Gristina, A. (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237, 1588ā€“1595.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Cima, L., Vacanti, J., Vacanti, C., Ingber, D., Mooney, D., and Langer, R. (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113, 143ā€“151.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Ma, P. X., Schloo, B., Mooney, D. and Langer, R. (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J. Biomed. Mater. Res. 29, 1587ā€“1595.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Freed, L. E., Marquis, C. J., Nohria, A., Emmanual, J., Mikos, A. G., and Langer, R. (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27, 11ā€“23.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Vacanti, C., Kim, W., Upton, J., Vacanti, M., Mooney, D., Schloo, B., and Vacanti, J. (1993) Tissue-engineered growth of bone and cartilage. Transplantation Proc. 25, 1019ā€“1021.

    CASĀ  Google ScholarĀ 

  22. Organ, G., Mooney, D., Hansen, L., Schloo, B., and Vacanti, J. (1993) Enterocyte transplantation using cell-polymer devices to create intestinal epithelial-lined tubes. Transplantation Proc. 25, 998ā€“1001.

    CASĀ  Google ScholarĀ 

  23. Shinoka, T., Ma, P. X., Shum-Tim, D., Breuer, C. K., Cusick, R. A., Zund, et al. (1996) Tissue-engineering heart valves: autologous valve leaflet replacement study in a lamb model. Circulation 94 (Suppl.), II-164ā€“II-168.

    CASĀ  Google ScholarĀ 

  24. Thomson, R., Yaszemski, M., Powers, J., and Mikos, A. (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J. Biomater. Sci. Polym. Ed. 7, 23ā€“38.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Mooney, D., Park, S., Kaufmann, P., Sano, K., McNamara, K., Vacanti, J., and Langer, R. (1995) Biodegradable sponges for hepatocyte transplantation. J. Biomed. Mater. Res. 29, 959ā€“965.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Cusick, R. A., Lee, H., Sano, K., Pollok, J. M., Utsunomiya, H., Ma, P. X., Langer, R., and Vacanti, J. P. (1997) The effect of donor and recipient age on engraftment of tissue engineered liver. J. Pediat. Surg. 32(2), 357ā€“360.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Lee, H., Cusick, R. A., Browne, F., Kim, T. H., Ma, P. X., Utsunomiya, H., Langer, R., and Vacanti, J. P. Increased angiogenesis by local delivery of bFGF increases survival of transplanted hepatocytes, to be published.

    Google ScholarĀ 

  28. Lee, H., Cusick, R. A., Utsunomiya, H., Ma, P. X., Langer, R., and Vacanti, J. P. Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds, to be published.

    Google ScholarĀ 

  29. Matlaga, B. and Salthouse, T. (1983) Ultrastructural observations of cells at the interface of a biodegradable polymer: Polyglactin 910. J. Biomed. Mater. Res. 17, 185ā€“197.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Craig, P., Williams, J., Davis, K., Magoun, A., Levy, A., Bogdansky, S., and Jones, J. J. (1975) A biologic comparison of polyglactin 910 and polyglycolic acid synthetic absorbable sutures. Surg. Gynecol. Obstet. 141, 1ā€“10.

    CASĀ  Google ScholarĀ 

  31. Mikos, A., Sarakinos, G., Leite, S., Vacanti, J., and Langer, R. (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14, 323ā€“330.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Leong, K., Brott, B., and Langer, R. (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J. Biomed. Mater. Res. 19, 941ā€“955.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Domb, A. and Langer, R. (1987) Polyanhydrides: I. Preparation of high molecular weight polyanhydrides. J. Polymer Science. 25, 3373ā€“3386.

    CASĀ  Google ScholarĀ 

  34. Choi, N. S. and Heller, J. (1978) US Patent 4,093,709.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ma, P.X., Langer, R. (1999). Fabrication of Biodegradable Polymer Foams for Cell Transplantation and Tissue Engineering. In: Morgan, J.R., Yarmush, M.L. (eds) Tissue Engineering Methods and Protocols. Methods in Molecular Medicineā„¢, vol 18. Humana Press. https://doi.org/10.1385/0-89603-516-6:47

Download citation

  • DOI: https://doi.org/10.1385/0-89603-516-6:47

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-516-4

  • Online ISBN: 978-1-59259-602-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics