Skip to main content

Monitoring Microbial Activities Using Membrane Inlet Mass Spectrometry

  • Protocol
Environmental Monitoring of Bacteria

Part of the book series: Methods in Biotechnology ((MIBT,volume 12))

Abstract

Monitoring microbial activities in the environment is difficult owing to the lack of suitable methods. For a technique to be useful for monitoring in situ activities, it must possess the following properties: sensitivity, selectivity, stability, the ability to make continuous real-time measurements, and be noninvasive or perturbing to the microorganisms or to the environment being studied. Currently used methods include manometric techniques, microsensors, chemical assays, gas chromatography and high-performance liquid chromatography, but all have their limitations and usually require substantial disruption to the environment being studied. The principles of membrane inlet mass spectrometry (MIMS) have been described elsewhere (1,2), and are summarized in detail here. Although MIMS allows measurements of numerous gases to be made in both the liquid and gas phases, only liquid phase measurements are detailed in this example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd, D. and Scott, R. I. (1983) Direct measurement of dissolved gases in microbial systems using inlet mass spectrometry. J. Gen. Microbiol. Methods 127, 313–328.

    Article  Google Scholar 

  2. Degn, H. (1992) Membrane inlet mass spectrometry in pure and applied microbiology. J. Microbiol. Methods 15, 185–197.

    Article  CAS  Google Scholar 

  3. Davies, K. J. P., Lloyd, D., and Boddy, L. (1989) Effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J. Gen. Microbiol. 135, 2445-2451.

    Google Scholar 

  4. Van Niel, E. W. J., Robertson, L. A., Cox, R. P., and Kuenen, J. G. (1992) Inhibition of denitrification and oxygen utilization by Thiosphaera pantotropha. J. Gen. Appl. Microbiol. 38, 553–558.

    Article  Google Scholar 

  5. Lloyd, D., Boddy, L., and Davies, K. J. P. (1987) Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception. FEMS Microbiol. Ecol. 45, 185–190.

    Article  CAS  Google Scholar 

  6. Lloyd, D. (1993) Aerobic denitrification in soils and sediments: from fallacies to facts. Trends Ecology Evol. 8, 352–356.

    Article  CAS  Google Scholar 

  7. Thomas, K. L., Lloyd, D., and Boddy, L. (1994) Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. FEMS Microbiol. Lett. 118, 181–186.

    Article  CAS  Google Scholar 

  8. Thomsen, J. K., Geest, T., and Cox, R. P. (1994) Mass spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by Paracoccus denitrificans. Appl. Environ. Microbiol. 60, 536–541.

    CAS  Google Scholar 

  9. Thomas, K. L. and Lloyd, D. (1995) Measurement of denitrification in estuarine sediment using membrane inlet mass spectrometry. FEMS Microbiol. Ecol. 16, 103–114.

    Article  CAS  Google Scholar 

  10. Degn, H., Cox, R. P., and Lloyd, D. (1985) Continuous measurement of dissolved gases in biological systems with the quadrupole mass spectrometer. Methods Biochem. Anal. 31, 185–197.

    Google Scholar 

  11. Jouanneau, Y., Kelley, B. C., Berlier, Y., Lespinat, P. A., and Vignais, P. M. (1980) Continuous monitoring by mass spectrometry of H2 production and recycling in Rhodopseudomonas capsulate. J. Bacteriol. 143, 628–636.

    CAS  Google Scholar 

  12. Berlier, Y. M. and Lespinat, P. A. (1980) Mass spectrometric kinetic studies of the nitrogenase and hydrogenase activities in in-vivo cultures of Azospirillum brasilense Sp.7. Arch. Microbiol. 125, 67–72.

    Article  CAS  Google Scholar 

  13. Jensen, B. B., Cox, R. P., and Degn, H. (1981) Mass spectrometric measurements of steady-state kinetics of cyanobacterial nitrogen fixation by monitoring dissolved N2 in an open system. FEMS Microbiol. Lett. 12, 37–40.

    Article  CAS  Google Scholar 

  14. Jensen, B. B. and Cox, R. P. (1988) Measurement of hydrogen exchange and nitrogen uptake by mass spectrometry. Methods Enzymol. 167, 467–474.

    CAS  Google Scholar 

  15. Carlsen, H. N., Degn, H., and Lloyd, D. (1991) Effects of alcohols on the respiration and fermentation of aerated suspensions of Baker’s Yeast. J. Gen. Microbiol. 137, 2879–2883.

    Article  CAS  Google Scholar 

  16. Bohátka,. S., Futó, I., Gál, I., Gál, J., Langer, G., Molnár, J., Paál, A., Pintér, G., Simon, M., Szádai, J., Székely, G., and Szilágyi, J. (1993) Quadrupole mass spectrometer system for fermentation monitoring. Vacuum 44, 669–671.

    Article  Google Scholar 

  17. Lloyd, D., Ellis, J. E., Hillman, K., and Williams, A. G. (1992) Membrane inlet mass spectrometry: probing the rumen ecosystem. Journal of Applied Bacteriology Symposium Supplement 1992 73, 155S–163S.

    Google Scholar 

  18. Virkki, V. T., Ketola, R. A., Ojala, M., Kotiaho, T., Komppa, V., Grove, A., and Facchetti, S. (1995) On-site environmental analysis by membrane inlet mass spectrometry. Analytical Chemistry 67, 1421–1425.

    Article  CAS  Google Scholar 

  19. Harland, B. J. and Nicholson, P. J. (1993) Continuous measurement of volatile organic chemicals in natural waters. Sci. Total Environ. 135, 37–54.

    Article  CAS  Google Scholar 

  20. Cristea, O. and Langer, G. (1992) Gas metabolism measurements of aquatic living structures by membrane inlet mass spectrometry for water pollution detection. Sensors and Actuators B 7, 518–521.

    Article  CAS  Google Scholar 

  21. Benstead, J. and Lloyd, D. (1994) Direct mass spectrometric measurement of gases in peat cores. FEMS Microbiol. Ecol. 13, 233–240.

    Article  Google Scholar 

  22. Lauritsen, F. R. and Gylling, S. (1995) On-line monitoring of biological reactions at low parts-per-trillion levels by membrane inlet mass spectrometry. Analytical Chemistry 67:1418–1420.

    Article  CAS  Google Scholar 

  23. Lloyd, D., Davies, K. J. P., and Boddy, L. (1986) Mass spectrometry as an ecological tool for in situ measurement of dissolved gases in sediment systems. FEMS Microbiol. Ecol. 38, 11–17.

    Article  CAS  Google Scholar 

  24. Wilhelm, E., Battino, R., and Wilcock, R. J. (1977) Low pressure solubility of gases in liquid water. Chem. Rev. 77, 219–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Firth, J.R., Edwards, C. (1999). Monitoring Microbial Activities Using Membrane Inlet Mass Spectrometry. In: Edwards, C. (eds) Environmental Monitoring of Bacteria. Methods in Biotechnology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-566-2:267

Download citation

  • DOI: https://doi.org/10.1385/0-89603-566-2:267

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-566-9

  • Online ISBN: 978-1-59259-487-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics