Skip to main content

Experimental Biofilms and Their Applications in the Study of Environmental Processes

  • Protocol
Environmental Monitoring of Bacteria

Part of the book series: Methods in Biotechnology ((MIBT,volume 12))

  • 886 Accesses

Abstract

The trend in research in recent years has been to extrapolate results from studies of planktonic bacteria into environmental systems. This method of studying planktonic bacteria under in vitro conditions has undoubtedly yielded important data in a wide range of areas; however, the examination of several environmental habitats, extreme or otherwise, such as a drinking water pipeline has revealed only relatively low numbers of planktonic cells. In aquatic systems the biofilm bacterial count per square centimeter of surface has been estimated to be approx 1000-fold higher than the corresponding planktonic count per cubic centimeter (1). Surface colonization by microorganisms was first recognized as significant as early as 1943 (2), and there is now a realization that we need to study microorganisms not only as biofilms but also in the context of the biofilm interactions with their immediate surroundings and the influences they exert on the environment. The environment has a significant effect on the metabolic activities of bacteria, and studies of biofilm bacteria represent the best tool for examining growth in natural and pathogenic ecosystems (3). The study of biofilms is relevant to a wide range of areas, and a multidisciplinary approach is the most productive route forward in the quest to understand the interactions occurring not only between the cells and the surfaces to which they adhere, but between the microcolonies that coexist within multispecies biofilms (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costerton, J. W., Nickel, J. C., and Ladd, T. I. (1986) Suitable methods for the comparative study of free-living and surface-associated bacterial populations, in Bacteria in Nature, vol. 2, (Poindexter, J. S. and Leadbetter, E. R., eds.), Plenum, New York, pp. 49–84.

    Google Scholar 

  2. Zobell, C. E. (1943) The effect of solid surfaces on bacterial activity. J. Bacteriol. 46, 39–56.

    CAS  Google Scholar 

  3. Costerton, J. W., Lewandowski, Z., deBeer, D., Korber, D., and James, G. (1994) Biofilms: the customised microniche. J. Bacteriol. 176(8), 2137–2142.

    CAS  Google Scholar 

  4. Characklis, W. C. and Marshall, K. C. (1989) Biofilms: a basis for an interdisciplinary approach, in Biofilms, (Characklis, W. C. and Marshall, K. C., eds.), Wiley Interscience, New York, NY, pp. 3.

    Google Scholar 

  5. Kjellerberg, S. and Hermansson, N. (1984) The effect of interfaces on small starved marine bacteria. Appl. Environ. Microbiol. 48, 497–503.

    Google Scholar 

  6. Zottola, E. A. and Sasahara, K. C. (1994) Microbial biofilms in the food processing industry—should they be a concern? Int. J. Food Microbiol. 23, 125–148.

    Article  CAS  Google Scholar 

  7. Costerton, J. W., Cheng, K.-J., Geesey, G. G., et al. (1987) Bacterial biofilms in nature and disease. Ann. Rev. Microbiology 41, 435–464.

    Article  CAS  Google Scholar 

  8. Bohlander, G. S. (1991) Biofilm effects on drag: measurements on ships, in Polymers in a Marine Environment. Marine Management (Holdings), p. 135.

    Google Scholar 

  9. van Loosdrecht, M. C., Lyklema, J., Norde, W., and Zehnder, A. J. B. (1990) Influence of interfaces on microbial activity. Microbiological Rev. 54(1), 75–87.

    Google Scholar 

  10. Anwar, H., Dasgupta, M. K., and Costerton, J. W. (1990) Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Agents Chemother. 34(11), 2043–2046.

    Article  CAS  Google Scholar 

  11. Anwar, H., Strap, J. L., and Costerton, J. W. (1992) Establishment of ageing biofilms: possible mechanisms of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36(7), 1347–1351.

    Article  CAS  Google Scholar 

  12. Brown, M. R. W., Allison, D. G., and Gilbert, P. (1988) Resistance of bacterial biofilms to antibiotics: a growth related effect? J. Antimicrob. Chemother. 22, 777–780.

    Article  CAS  Google Scholar 

  13. Nickel, J. C., Ruseska, I., Wright, J. B., and Costerton, J. W. (1985) Tobramycin resistance of cells of Pseudomonas aeruginosa growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27, 619–624.

    Article  CAS  Google Scholar 

  14. Marshall, K. C. (1994) Microbial adhesion in biotechnological processes. Curr. Opin. Biotechnol. 5, 296–301.

    Article  CAS  Google Scholar 

  15. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. (1995) Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745.

    Article  CAS  Google Scholar 

  16. Hoyle, B., Jass, J., and Costerton, J. W. (1990) The biofilm glycocalyx as a resistance factor. J. Antimicrob. Chemother. 26, 1–6.

    Article  CAS  Google Scholar 

  17. Bale, M. J., Fry, J. C., and Day, M. J. (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl. Environ. Microbiol. 54, 972–978.

    CAS  Google Scholar 

  18. Lappin-Scott, H. M., Costerton, J. W., and Marrie, T. J. (1992) Biofilms and biofouling, in Encyclopaedia of Microbiology, Academic, pp. 277.

    Google Scholar 

  19. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D., and Lappin-Scott, H. M. (1995). Microbial Biofilms. Ann. Rev. Micro. 49, p713.

    Article  Google Scholar 

  20. Bryers, J. D. (1994) Biofilms and the technological implications of microbial cell adhesion. Colloids Surfaces B: Biointerfaces 2, 9–23.

    Article  CAS  Google Scholar 

  21. Marshall, K. C. (1992) Biofilms: an overview of bacterial adhesion, activity and control at surfaces. ASM News 58(4), 202–207.

    Google Scholar 

  22. Geesey, G. G., Stupy, M. W., and Bremer, P. J. (1992) The dynamics of biofilms. International Biodeteriation and Biodegradation 30, 135–154.

    Article  Google Scholar 

  23. Lappin-Scott, H. M. and Costerton, J. W. (1989) Bacterial biofilms and surface fouling. Biofouling 1, 323–342.

    Article  CAS  Google Scholar 

  24. MacLeod, F. A., Guiot, S. R., and Costerton, J. W. (1995) Electron microscopic examination of the extracellular polymeric substances in anaerobic granular biofilms. World J. Microbiol. Biotechnol. 11, 481–485.

    Article  CAS  Google Scholar 

  25. Robinson, P. J., Walker, J. T., Keevil, C. W., and Cole, J. (1995) Reporter genes and fluorescent probes for studying the colonisation of biofilms in a drinking water supply line by enteric bacteria. FEMS Microbiol. Lett. 129, 183–188.

    Article  CAS  Google Scholar 

  26. LeChevallier, M. W., Babcock, T. M., and Lee, R. G. (1987) Examination and characterisation of distribution system biofilms. Appl. Environ. Microbiol 53(12), 2714–2724.

    CAS  Google Scholar 

  27. Walker, J. T., Rogers, J., and Keevil, C. W. (1993) An investigation of the efficacy of a bromine-containing biocide on an aquatic consortium of planktonic and biofilm microorganisms including Legionella pneumophila. Biofouling 8, 47–54.

    Article  Google Scholar 

  28. Goldmann, D. A. and Pier, G. B. (1993) Pathogenesis of infections related to intravascular catheterisation. Clin. Microbiol. Rev. 6(2), 176–192.

    CAS  Google Scholar 

  29. Anwar, H. and Costerton, J. W. (1992) Effective use of antibiotics in the treatment of biofilm-associated infections. ASM News 58(12), 665–668.

    Google Scholar 

  30. Jones, R. N., Barry, A. L., Gavan, T. L., and Washington, J. A. (1985) Susceptibility tests: microdilution and macrodilution broth procedures, in Manual of Clinical Microbiology (Lennette, E. H., Balows, A., Hausler, W. J., and Shadomy, H. J., eds.), ASM, Washington, DC, pp. 972–977.

    Google Scholar 

  31. Amabile-Cuevas, C. F., Cardenas-Garcia, M., and Ludgar, M. (1995) Antibiotic resistance. American Scientist 83, 320–329.

    Google Scholar 

  32. Eighmy, T. T., Arwa, J., deRome, L., et al. (1992) Controlled release of antifouling coatings. II. The effects of controlled release of 2,4-dinitrophenolate and benzoate on marine biofilm development and metabolic activity. Biofouling 6, 147–163.

    Article  CAS  Google Scholar 

  33. Gabriel, M. M., Mayo, M. S., May, L. L., Simmons, R. B., and Ahearn, D. G. (1996) In vitro evaluation of the efficacy of a silver-coated catheter. Curr. Microbiol. 33, 1–5.

    Article  CAS  Google Scholar 

  34. Jones, C. R., Handley, P. S., Robson, G. D., Eastwood, I. M., and Greenhalgh, M. (1996) Biocides incorporated into plasticised polyvinylchloride reduce adhesion of Pseudomonas fluorescens BL146 and substratum hydrophobicity. J. Appl. Bacteriol. 81, 553–560.

    CAS  Google Scholar 

  35. Yu, F. P., Pyle, B. H., and McFeters, G. A. (1993) A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection. J. Microbiol. Methods 17, 167–180.

    Article  CAS  Google Scholar 

  36. Huang, C. T., Yu, F. P., McFeters, G. A., and Stewart, P. S. (1995) Non-uniform spatial patterns of respiratory activity within biofilms during disinfection. Appl. Environ. Microbiol. 61(6), 2252–2256.

    CAS  Google Scholar 

  37. Suci, P. A., Mittelman, M. W., Yu, F. P., and Geesey, G. G. (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38(9), 2125–2133.

    Article  CAS  Google Scholar 

  38. deBeer, D., Srinivasan, R., and Stewart, P. S. (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60(12), 4339–4344.

    Google Scholar 

  39. Gilbert, P. (1995) The value of in-vitro models to the study of biofilms, in The Life and Death of Biofilm (Wimpenny, J., Handley, P., Gilbert, P., and Lappin-Scott, H. M., eds.), Cardiff, BioLine, Cardiff, UK, pp. 13–16.

    Google Scholar 

  40. Gilbert, P. and Allison, D. G. (1993) Laboratory methods for biofilm production, in Microbial biofilms: formation and control (Denyer, S. P., Gorman, S. P., and Sussman, M., eds.), Blackwell Scientific, Oxford, UK, pp. 29.

    Google Scholar 

  41. McCoy, J. C., Bryers, J. D., Robbins, J., and Costerton, J. W. (1981) Observations in fouling biofilm formation. Can. J. Microbiol. 27, 910–917.

    Article  CAS  Google Scholar 

  42. Schalkowsky, S. and Hunt, L. G. (1995) Assessment of therapeutic potential by means of a probability model of antimicrobial action. J. Antimicrob. Chemother. 35, 31–52.

    Article  CAS  Google Scholar 

  43. Lawrence, J. R. and Caldwell, D. E. (1987) Behaviour of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 87(14), 15–27.

    Article  Google Scholar 

  44. Caldwell, D. E., and Lawrence, J. R. (1995) Study of attached cells in continuous-flow slide culture, in Handbook of Laboratory Model Systems for Microbial Ecosystems, pp. 117–138.

    Google Scholar 

  45. LeChevallier, M. W., Cawthon, C. D., and Lee, R. G. (1988) Inactivation of biofilm bacteria. Appl. Environ. Microbiol. 54(10), 2492–2499.

    CAS  Google Scholar 

  46. Gilbert, P., Allison, D. G., Evans, D. J., Handley, P. S., and Brown, M. R. W. (1989) Growth rate control of adherent bacterial populations. Appl. Environ. Microbiol. 55, 1308–1311.

    CAS  Google Scholar 

  47. Gjaltema, A., Arts, P. A. M., van Loosdrecht, M. C. M., Kuenen, J. G., and Heijnen, J. J. (1994) Heterogeneity of biofilms in rotating annular reactors: occurrence, structure and consequences. Biotech. Bioeng. 44, 194–204.

    Article  CAS  Google Scholar 

  48. Peters, A. C. and Wimpenny, J. W. T. (1988) A constant depth laboratory film fermenter. Biotech. Bioeng. 32, 263–270.

    Article  CAS  Google Scholar 

  49. Kinniment, S. L. and Wimpenny, J. W. T. (1990) Biofilms and biocides. International Biodeterior. 26, 181–194.

    Article  CAS  Google Scholar 

  50. Geesey, G. G. and White, D. C. (1990) Determination of bacterial growth and activity at solid-liquid interfaces. Annu. Rev. Micro. 44, 579–602.

    Article  CAS  Google Scholar 

  51. Keevil, C. W. and Walker, J. T. (1992) Normarski DIC microscopy and image analysis of biofilms. Binary 4, 92–95.

    Google Scholar 

  52. Nivens, D. E., Palmer, R. J., and White, D. C. (1995) Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques. J. Ind. Microbiol. 15, 263–276.

    Article  CAS  Google Scholar 

  53. Marshall, K. C., Stout, R., and Mitchell, R. (1971) Selective sorption of bacteria from seawater. Can. J. Microbiol. 17, 1413–1416.

    Article  CAS  Google Scholar 

  54. Davies, D. G., Chakrabarty, A. M., and Geesey, G. G. (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59(4), 1181–1186.

    CAS  Google Scholar 

  55. Prescott, L. M., Harley, J. P., and Klein, D. A., eds. (1996) The study of microbial structure: microscopy and specimen preparation, in Microbiology. Wm. C. Brown, Oxford, UK, pp. 20–39.

    Google Scholar 

  56. Beveridge, T. J., Popkin, T. J., and Cole, R. M. (1994) Electron microscopy, in Methods for General and Molecular Bacteriology (Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R, eds.), ASM, Washington, DC., pp. 42–70.

    Google Scholar 

  57. Surman, S. B., Walker, J. T., Goddard, D. T., et al. (1996) Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 25, 57–70.

    Article  Google Scholar 

  58. Sutton, N. A., Hughes, N., and Handley, P. S. (1994) A comparison of conventional SEM techniques, low temperature SEM and the electroscan wet scanning electron microscope to study the structure of a biofilm of Streptococcus crista CR3. J. Appl. Bacteriol. 76, 448–454.

    Article  CAS  Google Scholar 

  59. Bremer, P. J., Geesey, G. G., and Drake, B. (1992) Atomic force microscopy examination of the topography of a hydrated bacterial biofilm on a copper surface. Curr. Microbiol. 24, 223–230.

    Article  CAS  Google Scholar 

  60. Lauvvik, T. and Bakke, R. (1994) Biofilm thickness measurements by variance analysis of optical images. J. Micro. Methods 20, 219–224.

    Article  Google Scholar 

  61. Caldwell, D. E., Korber, D. R., and Lawrence, J. R. (1993) Analysis of biofilm formation using 2D verses 3D digital imaging. J. Appl. Bacteriol. 74S, 52S–66S.

    Article  Google Scholar 

  62. Stewart, P. S., Camper, A. K., Handran, S. D., Tuang, C.-T., and Warnecke, M. (1997) Spatial distribution and coexistence of Klebsiella pneumonia and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33, 2–10.

    Article  Google Scholar 

  63. Schaule, G., Flemming, H.-C., and Ridgway, H. F. (1993) Use of 5-Cyano-2, 3-Ditolyl Tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl. Environ. Microbiol. 59(11), 3850–3857.

    CAS  Google Scholar 

  64. Yu, P. F. and McFeters, G. A. (1994) Physiological responses of bacteria in biofilms to disinfection. Appl. Environ. Microbiol. 60(7), 2462–2466.

    CAS  Google Scholar 

  65. Rodriguez, G. G., Phipps, D., Ishiguro, K., and Ridgway, H. F. (1992) Use of a fluorescent redox probe for direct visualisation of actively respiring bacteria. Appl. Environ. Microbiol. 58(6), 1801–1808.

    CAS  Google Scholar 

  66. Yu, F. P., Callis, G. M., Stewart, P. S., Griebe, T., and McFeters, G. A. (1994) Cryosectioning of biofilms for microscopic examination. Biofouling 8, 85–91.

    Article  Google Scholar 

  67. Dempsey, M. J. (1981) Marine bacterial fouling: a scanning electron microscope study. Marine Biol. 61, 305–315.

    Article  Google Scholar 

  68. Brading, M. G., Boyle, J., and Lappin-Scott, H. M. (1995) Biofilm formation in laminar flow using Pseudomonas fluorescens EX101. J. Ind. Microbiol. 15, 297–304.

    Article  CAS  Google Scholar 

  69. Camper, A. K., Jones, W. L., and Hayes, J. T. (1996) Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl. Environ. Microbiol. 62(11), 4014–4018.

    CAS  Google Scholar 

  70. Hamilton, W. A. (1995) Biofilms and microbially influenced corrosion, in Microbial Biofilms (Lappin-Scott, H. M., and Costerton, J. W., eds.), Cambridge University Press, Cambridge, UK, pp. 171–182.

    Chapter  Google Scholar 

  71. Stoodley, P., deBeer, D., and Lewandowski, Z. (1994) Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60(8), 2711–2716.

    CAS  Google Scholar 

  72. deBeer, D., Stoodley, P., and Lewandowski, Z. (1993) Effects of biofilm structures on oxygen distribution and mass transport. Biotech. Bioeng. 43, 1131–1138.

    Article  Google Scholar 

  73. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E. (1991) Optical sectioning of microbial biofilms. J. Bacteriol. 173(20), 6558–6567.

    CAS  Google Scholar 

  74. Lewandowski, Z., Lee, W. G., Characklis, W. G., and Little, B. (1987) Dissolved oxygen and pH microelectrode measurements at water-immersed metal surfaces. Corrosion Sci. 45(2), 92–98.

    Article  Google Scholar 

  75. Jansen, B. and Kohnen, W. (1995) Prevention of biofilm formation by polymer modification. J. Ind. Microbiol. 15, 391–396.

    Article  CAS  Google Scholar 

  76. Quignon, F., Sardin, M., Kiene, L., and Schwartzbrod, L. (1997) Poliovirus-1 inactivation and interaction with biofilm: a pilot-scale study. Appl. Environ. Microbiol. 63(3), 978–982.

    CAS  Google Scholar 

  77. Jiang, H.-Q., Chen, Y.-F., Li, A. N., and Li, Z. D. (1994) Clinical burn wound infection caused by L-forms of Staphylococcus aureus. Burns 20(1), 83–84.

    Article  CAS  Google Scholar 

  78. McLean, R. J. C., Nickel, J. C., and Olson, M. E. (1995) Biofilm associated urinary tract infections, in Microbial Biofilms (Lappin-Scott, H. M. and Costerton, J. W., eds.), Cambridge University Press, Cambridge, UK, pp. 261–273.

    Chapter  Google Scholar 

  79. Costerton, J. W., and Lappin-Scott, H. M. (1995) Introduction to microbial biofilms, in Microbial Biofilms (Lappin-Scott, H. M. and Costerton, J. W., eds.), Cambridge University Press, Cambridge, UK, pp. 1–11.

    Chapter  Google Scholar 

  80. Raad, I., Darouiche, R., Hachem, R., Sacilowski, M., and Bodey, G. P. (1995) Antibiotics and prevention of microbial colonisation of catheters. Antimicrob. Agents Chemother. 39(1), 2397–2400.

    Article  CAS  Google Scholar 

  81. Thornsberry, C. and Sherris, J. C. (1985) General considerations, in Manual of Clinical Microbiology (Lennette, E. H., Balows, A., Hausler, W. J., and Shadomy, H. J., eds.), ASM, Washington, DC, pp. 959–966.

    Google Scholar 

  82. Maki, D. (1994) Infections caused by intravascular devices used for infusion therapy: pathogenesis, prevention and management, in Infections Associated with Indwelling Medical Devices (Bisno, A. L. and Waldvogel, F. A., eds.), American Society for Microbiology, Washington, DC, pp. 155–212.

    Google Scholar 

  83. Christensen, G. D., Baldassarri, L., and Simpson, W. A. (1994) Colonisation of medical devices by coagulase-negative staphylococci, in Infections Associated with Indwelling Medical Devices (Bisno, A. L. and Waldvogel, F. A., eds.), American Society for Microbiology, Washington, DC, pp. 45–78.

    Google Scholar 

  84. Bremer, P. J. and Geesey, G. G. (1991) An evaluation of biofilm development utilising non-destructive attenuated total reflectance fourier transform infrared spectroscopy. Biofouling 3, 89–100.

    Article  CAS  Google Scholar 

  85. Rogers, J. and Keevil, C. W. (1995) Species diversity in developing freshwater biofilms, in The Life and Death of Biofilm (Wimpenny, J., Nichols, W., Stickler, D., and Lappin-Scott, H., eds.), Bioline, Cardiff, UK, pp. 77–82.

    Google Scholar 

  86. Williams, H. G., Day, M. J., Fry, J. C., and Stewart, G. J. (1996) Natural transformation in river epilithon. Appl. Environ. Microbiol. 62(8), 2994–2998.

    CAS  Google Scholar 

  87. Wimpenny, J. W. T. (1995) On the nature and validity of models, in The Life and Death of Biofilm (Wimpenny, J., Nichols, W., Stickler, D., and Lappin-Scott, H., eds.), BioLine, Cardiff, pp. 1–8.

    Google Scholar 

  88. Addy, M., Slayne, M. A., and Wade, W. G. (1992) The formation and control of dental plaque—an overview. J. Appl. Bacteriol. 73, 269–278.

    Article  CAS  Google Scholar 

  89. Busscher, H. J. and Weerkamp, A. H. (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev. 46, 165–173.

    Article  CAS  Google Scholar 

  90. Brown, M. W. R. and Gilbert, P. (1995) Some perspectives on preservation and disinfection in the present-day. Int. Biodet. Biodeg. 36(3-4), 219–226.

    Article  Google Scholar 

  91. Caldwell, D. E., Korber, D. R., and Lawrence, J. R. (1992) Confocal laser microscopy and digital image analysis in microbial ecology, in Advances in Microbial Ecology (Marshall, K. C., ed.), Plenum, New York, pp. 1–67.

    Chapter  Google Scholar 

  92. McFeters, G. A., Yu, F. P., Pyle, B. H., and Stewart, P. S. (1995) Physiological methods to study biofilm disinfection. J. Ind. Microbiol. 15, 333–338.

    Article  CAS  Google Scholar 

  93. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E. (1994) The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium. Can. J. Microbiol. 40, 331–340.

    Article  CAS  Google Scholar 

  94. Ronot, X., Benel, L., Adolphe, M., and Mounolou, J. (1986) Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol. Cell 57, 1–8.

    Article  CAS  Google Scholar 

  95. Matsuyama, T. (1984) Staining of living bacteria with rhodamine 123. FEMS Microbiol. Lett. 21, 153–157.

    Article  CAS  Google Scholar 

  96. Pyle, B. H., Broadway, S. C., and McFeters, G. A. (1995) Factors affecting the determination of respiratory activity on the basis of Cyanoditolyl Tetrazolium Chloride reduction with membrane filtration. Appl. Environ. Microbiol. 61(12), 4304–4309.

    CAS  Google Scholar 

  97. White, G. F., Russell, N. J., Marchesi, J. P., and House, W. A. (1993) Surfactant adsorption, bacterial attachment and biodegradation in river sediment: a three-way interaction, in Bacterial Biofilms and Their Control in Medicine and Industry (Wimpenny, J., Nichols, W., Stickler, D., and Lappin-Scott, H., eds.), BioLine, Cardiff, pp. 121–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rayner, J.C., Lappin-Scott, H.M. (1999). Experimental Biofilms and Their Applications in the Study of Environmental Processes. In: Edwards, C. (eds) Environmental Monitoring of Bacteria. Methods in Biotechnology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-566-2:279

Download citation

  • DOI: https://doi.org/10.1385/0-89603-566-2:279

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-566-9

  • Online ISBN: 978-1-59259-487-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics