Skip to main content

Rapid (Ligase-Free) Subcloning of Polymerase Chain Reaction Products

  • Protocol
The Nucleic Acid Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 138 Accesses

Abstract

The polymerase chain reaction (PCR) is a versatile, widely used method for the production of a very large number of copies of a specific DNA molecule (1,2). For some applications, it is advantageous to subclone the PCR product into a plasmid vector for subsequent replication in bacteria (36). Subcloning the PCR product into a plasmid vector has several advantages: The amplified fragment can be sequenced with greater reliability, only one allele is sequenced per clone, and the vector containing the PCR product may be used for other molecular biological experiments, e.g., in vitro transcription, transfection, and further amplification in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequence and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  2. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  3. Scharf, S. J., Horn, G. T., and Erlich, H. A. (1986) Direct cloning and sequence analyses of enzymatically amplified genomic sequences. Science 233, 1076–1078.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, C. C., Wu, X., Gibbs, R. A., Cook, R. G., Muzny, D. M., and Caskey, C. T. (1988) Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase. Science 239, 1288–1290.

    Article  PubMed  CAS  Google Scholar 

  5. Higuchi, R. (1989) Using PCR to engineer DNA, in PCR Technology (Erlich, H. A., ed.), Stockton, New York, pp. 61–70.

    Google Scholar 

  6. Scharf, S. J. (1990) Cloning with PCR, in PCR Protocols (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, San Diego, pp. 84–91.

    Google Scholar 

  7. Kaufman, D. L. and Evans, G. A. (1990) Restriction endonuclease cleavage at the termini of PCR products. BioTechniques 9, 304–306.

    PubMed  CAS  Google Scholar 

  8. Shuldiner, A. R., Scott, L. A., and Roth, J. (1990) PCR induced subcloning polymerase chain reaction (PCR) products. Nucleic Acid Res. 18, 1920.

    Article  PubMed  CAS  Google Scholar 

  9. Shuldiner, A. R., Tanner, K., Scott, L. A., and Roth, J. (1991) Ligase-free subcloning: a versatile method of subcloning polymerase chain reaction (PCR) products in a single day. Anal. Biochem. 194, 9–15.

    Article  PubMed  CAS  Google Scholar 

  10. Higuchi, R., Krummel, B., and Saiki, R. K. (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acid Res. 16, 7351–7367.

    Article  PubMed  CAS  Google Scholar 

  11. Horton, R. M, Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.

    Article  PubMed  CAS  Google Scholar 

  12. Del Sal, G., Manfioletti, G., and Schneider, C. (1989) A one-tube DNA mini-preparation suitable for sequencing. Nucleic Acids Res. 16, 9878.

    Article  Google Scholar 

  13. Maas, R. (1983) An improved cloning hybridization method with significantly increased sensitivity for detection of single genes. Plasmid 10, 296–298.

    Article  PubMed  CAS  Google Scholar 

  14. Gussow, D. and Clackson, T. (1989) Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acid Res. 17, 4000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Shuldiner, A.R., Tanner, K. (2000). Rapid (Ligase-Free) Subcloning of Polymerase Chain Reaction Products. In: Rapley, R. (eds) The Nucleic Acid Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-038-1:295

Download citation

  • DOI: https://doi.org/10.1385/1-59259-038-1:295

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-459-4

  • Online ISBN: 978-1-59259-038-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics