Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 142))

Abstract

The activator protein-1 (AP-1) transcriptional complex is composed of DNA binding proteins belonging to the Jun and Fos proto-oncogene families, which play an important role in cell proliferation and transformation (reviewed in ref. 1). AP-1 activity is required to stimulate many genes that are induced following growth factor and cytokine treatment, and also is required for transformation mediated by oncogenes such as ras (2). Members of the Jun family can homodimerize or heterodimerize with each other or Fos family members, which cannot bind DNA on their own. The dimerization, which is mediated by a leucine zipper motif, allows the complex to bind to a consensus DNA sequence 5′-TGA G/C TCA-3′, termed an AP-1 site. This same sequence was found in several 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive genes and, hence, is also designated a TRE or TPA-responsive element. Heterodimers can form between c-Jun and ATF-2, a member of the CREB (CRE binding) protein family, allowing the complex to bind to CRE (cAMP regulatory element) sites, which differ from an AP-1 site by one nucleotide (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angel P. and Karin M. (1991) The role of Jun, Fos, and the AP-1complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129–157.

    PubMed  CAS  Google Scholar 

  2. Schutte J., Minna J. D., and Birrer M. J. (1989) Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-la cells as a single gene. Proc. Natl. Acad. Sci.USA 86, 2257–2261.

    Article  PubMed  CAS  Google Scholar 

  3. Jvashkiv L. B., Liou H.-C, Kara C. J., Lamph W. W., Verma I. M., and Glimcher L. H. (1990) mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoyl-phorbol-13-acetate, response element. Mol. Cell Biol. 10, 1609–1621.

    Google Scholar 

  4. Hai T. and Curran T. (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA 88, 3720–3724.

    Article  PubMed  CAS  Google Scholar 

  5. Hsu J.-C, Cressman D. E., and Taub R. (1993) Promoter-specific trans-activation and inhibition mediated by JunB. Cancer Res. 53, 3789–3794.

    PubMed  CAS  Google Scholar 

  6. Karin M. (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16,483–16,486.

    PubMed  CAS  Google Scholar 

  7. Marais R.and Marshall C.J. (1996) Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surveys 27, 101–125.

    PubMed  CAS  Google Scholar 

  8. Kyriakis J. M. and Avruch J. (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 271, 24,313–24,316.

    Article  PubMed  CAS  Google Scholar 

  9. Woodgett J. R., Avruch J., and Kyriakis J. (1996) The stress activated protein kinase pathway. Cancer Surveys 27, 127–138.

    PubMed  CAS  Google Scholar 

  10. Zinck R., Hipskind R. A., Pingoud V., and Nordheim A. (1993) c-fos transcrip-tional activation and repression correlate temporally with the phosphorylation status of TCF. EMBO J. 12, 2377–2387.

    PubMed  CAS  Google Scholar 

  11. Treisman R. (1996) Regulation of transcription by MAP kinase cascades. Curr.Opin. Cell Biol. 8, 205–215.

    Article  PubMed  CAS  Google Scholar 

  12. Whitmarsh A. J., Shore P., Sharrocks A. D., and Davis R.J. (1995) Integration of MAP kinase signal transduction pathways at the serum response element. Science 269,403–407.

    Article  PubMed  CAS  Google Scholar 

  13. Iordanov M., Bender K., Ade T., Schmid W., Sachsenmaier C, Engel K., Gaestel M., Rahmsdorf H. J., and Herrlich P. (1997) CREB is activated by UVC through a p38/HOG-l-dependent protein kinase. EMBO J. 16, 1009–1022.

    Article  PubMed  CAS  Google Scholar 

  14. van Dam H., Duyndam M., Rottier R., Bosch A., de Vries-Smits L., Herrlich P., Zantema A., Angel P., and van der Eb A. J. (1993) Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid E1 A protein. EMBO J. 12, 479–487.

    PubMed  Google Scholar 

  15. Derijard B., Hibi M., Wu I.-H., Barrett T., Su B., Deng T., Karin M., and Davis R. J. (1994) JNK1: a protein kinase stimulated by UV light and Ha-ras that binds and phosphorylates the c-jun activation domain. Cell 76, 1025–1037.

    Article  PubMed  CAS  Google Scholar 

  16. Kyriakis J.M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M.F., Avruch J., and Woodgett J. R. (1994) The stress-activated protein kinase subfamily of c-Junkinases. Nature 369, 156–160.

    Article  PubMed  CAS  Google Scholar 

  17. Gupta S., Campbell D., Derijard B., and Davis R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389–393.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang Y., Chen C, Li Z., Guo W., Gegner J. A., Lin S., and Han J. (1996) Characterization of the structure and function of a new mitogen-activated protein kinase (p38p). J. Biol Chem. 271, 17,920–17,926.

    Article  PubMed  CAS  Google Scholar 

  19. Jonk L. J. C, Itoh S., Heldin C.-H., ten Dijke P., and Kruijer W. (1998) Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone mor-phogenetic protein-indueible enhancer. J. Biol Chem. 273, 21,145–21,152.

    Article  PubMed  CAS  Google Scholar 

  20. Swanson K. D., Taylor L. K., Haung L., Burlingame A. L., and Landreth G. E. (1999) Transcription factor phosphorylation by pp90rsk2: identification of Fos kinase and NGFI-B kinase I as pp90rsk2. J. Biol. Chem. 274, 3385–3395.

    Article  PubMed  CAS  Google Scholar 

  21. Keeton M.R., Curriden S.A., vanZonneveld A.J., and Loskutoff D.J.(1991) Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 266, 23,048–23,052.

    PubMed  CAS  Google Scholar 

  22. Campbell C.E., Flenniken A.M., Skup D., and Williams B.R.G. (1991) Identification of a serum-and phorbol ester-responsive element in the murine tissue inhibitor of metalloproteinase gene. J. Biol. Chem. 266, 7199–7206.

    PubMed  CAS  Google Scholar 

  23. Kim S.-J., Angel P., Lafyatis R., Hattori K., Kim K. Y., Sporn M. B., Karin M., and Roberts A. B. (1990) Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol.Cell Biol. 10, 1492–1497.

    PubMed  CAS  Google Scholar 

  24. Angel P., Hattori K., Smeal T., and Karin M. (1988) The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell 55, 875–885.

    Article  PubMed  CAS  Google Scholar 

  25. Chung K. Y., Agarwal A., Uitto J., and Mauviel A. (1996) An AP-1 binding sequence is essential for regulation of the human alpha2(I) (C0L1A2) promoter activity by transforming growth factor-beta. J. Biol. Chem. 271, 3272–3278.

    Article  PubMed  CAS  Google Scholar 

  26. Jin G. and Howe P. H. (1998) Regulation of clusterin gene expression by transforming growth factor beta. J. Biol. Chem. 272, 26,620–26,626.

    Article  Google Scholar 

  27. Dean D. C, Bowlus C. L., and Bourgeois S. (1987) Cloning and analysis of the promoter region of the human fibronectin gene. Proc.Natl. Acad. Sci.USA 84, 1876–1880.

    Article  PubMed  CAS  Google Scholar 

  28. Kim S.-J., Wagner S., Liu F., O’ Reilly M. A., Robbins P. D., and Green M. R. (1992) Retinoblastoma gene product activates expression of the human TGF-β2 gene through transcription factor ATF-2. Nature 358, 331–334.

    Article  PubMed  CAS  Google Scholar 

  29. Hocevar B. A., Brown T. L., and Howe P. H. (1999) TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18, 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  30. Ryder K., Lau L. F., and Nathans D. (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc. Natl. Acad. Sci. USA 85, 1487–1491.

    Article  PubMed  CAS  Google Scholar 

  31. Sambucetti L. C, Schaber M., Kramer R., Crowl R., and Curran T.(1986) The fos gene product undergoes extensive post-translational modification in eukary-otic but not in prokaryotic cells. Gene 43, 69–11.

    Article  PubMed  CAS  Google Scholar 

  32. Danielson P. E., Forss-Petter S., Brow M. A., Calavetta L., Douglass J., Milner R.J., and Sutcliffe J. G. (1988) plB15: acDNA clone of the rat mRNA encoding cyclophilin. DNA 7, 261–267.

    Article  PubMed  CAS  Google Scholar 

  33. Pertovaara L., Sistonen L., Bos T. J., Vogt P. K., Keski-Oja J., and Alitalo K. (1989) Enhanced jun gene expression is an early genomic response to transforming growth factor beta stimulation. Mol. Cell Biol. 9, 1255–1262.

    PubMed  CAS  Google Scholar 

  34. Mauviel A., Chung K.-Y., Agarwal A., Tamai K., and Uitto J. (1996) Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor β in fibroblasts and keratinocytes. J. Biol. Chem. 271, 10,917–10,923.

    Article  PubMed  CAS  Google Scholar 

  35. Leof E. B., Proper J. A., Goustin A. S., Shipley G. D., DiCorleto P. E., and Moses H. L. (1986) Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity. Proc. Natl. Acad. Sci.USA 83. 2453–2457.

    Article  PubMed  CAS  Google Scholar 

  36. Maniatis T., Fritsch E. F., and Sambrook J., eds. (1989) Molecular Cloning:A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Plainview, NY. pp. 7.46–7.48.

    Google Scholar 

  37. Hocevar B. A. and Howe P. H. (1996) Isolation and characterization of mutant cell lines defective in transforming growth factor beta signaling. Proc. Natl. Acad. Sci.USA 93,7655–7660.

    Article  PubMed  CAS  Google Scholar 

  38. Liu F., Hata A., Baker J. C, Doody J., Carcamo J., Harland R. M., and Massague J. (1996) A human Mad protein acting as a BMP-regulated transcrip-tional activator. Nature 381, 620–623.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Y., Feng X.-H., and Derynck R. (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394, 909–913.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Hocevar, B.A., Howe, P.H. (2000). Regulation of AP-1 Activity by TGFβ. In: Howe, P.H. (eds) Transforming Growth Factor-Beta Protocols. Methods in Molecular Biology™, vol 142. Humana Press. https://doi.org/10.1385/1-59259-053-5:97

Download citation

  • DOI: https://doi.org/10.1385/1-59259-053-5:97

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-646-8

  • Online ISBN: 978-1-59259-053-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics